2.中国科学院大学资源与环境学院,北京 100049
1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
矿业活动对土壤系统良性运转带来较大的环境负荷,矿区周边土壤重金属污染风险评估是土壤污染防治和资源可持续开发的关键。在应用单因子污染指数法、潜在生态风险指数法、风险评价编码法(RAC),并结合空间分析和冗余分析手段的基础上,对新疆某矿冶区周边土壤重金属生物有效性和生态风险进行了系统研究。结果表明:研究区土壤As、Cu、Mn和Cd超标率分别为88%、38%、49%和24%;土壤Mn、Zn、As和Cd弱酸可溶态高值区主要集中在尾砂库和收砷房的附近区域。单因子污染指数评价揭示As和Cu污染累积较为严重。潜在生态风险评价显示,As、Cd和Cu生态风险较高,Mn为低生态风险。风险编码法(RAC)评价结果进一步揭示Mn和Cd具有显著的土壤迁移风险。冗余分析结果显示,空间异质性是影响土壤重金属弱酸可溶态含量变异的主要因素。土壤pH和重金属弱酸可溶态是影响潜在生态风险指数(RI)的2个重要因素。综合风险评价手段与多尺度分析方法的联合应用有助于提高区域风险评价的准确性。
The mining activities bring heavy environmental loads on functions and structures of soil system. Ecological risk assessment is the prerequisite for pollution prevention and sustainable exploitation of resources. It provides a scientific basis for local government departments to carry out comprehensive management planning. Based on potential ecological and risk assessment code (RAC), redundancy and spatial analysis, and other methods, the bioavailability and ecological risk of soil heavy metals in a mining area in Xinjiang were visualized. The results showed that the exceeding standard rates of As, Cu, Mn and Cd in tested soil were 88%, 38%, 49% and 24%, respectively. The high-concentration zone for weak acid soluble fraction of Mn, Zn, As and Cd was mainly concentrated in the tailing dump and arsenic collection chamber area. The evaluation by single factor pollution index showed that the accumulation of As and Cu in local soil was serious. Potential ecological risk assessment indicated that As, Cd, Cu had high ecological risks, while all samples of Mn had low ecological risk. The results determined by risk assessment code (RAC) further presented the high potential transfer risk for Mn and Cd in soils. The redundancy analysis indicated that the spatial heterogeneity was the key reason leading to different weak acid soluble fraction of heavy metals in soils. Soil pH and weak acid soluble fraction are two major factors affecting the potential ecological risk index (RI) of heavy metals in soils. The combination of comprehensive risk assessment and multi-scale analysis could improve the accuracy of regional ecological risk assessment.
.
Spatial distribution of weak acid soluble fraction of heavy metals in soils
Distribution characteristics of heavy metals forms in soils
Potential ecological risk and RAC risk index of heavy metals in soils
土壤理化性质、重金属弱酸可溶态含量与生态风险指数的相关关系
Relationship between physicochemical properties of soils, weak acid soluble fraction of heavy metals, and ecological risk index
Statistical analysis of total and weak acid soluble fraction of heavy metals in soils
[1] | 李乔, 王淑芬, 曹有智, 等. 准东煤田周边农田土壤重金属污染生态风险评估与来源分析[J]. 农业环境科学学报, 2017, 36(8): 1537-1543. |
[2] | 胡锋, 王兴磊, 刘世辉, 等. 伊犁矿区风险点土壤重金属污染特征及生态风险评价[J]. 矿业安全与环保, 2018, 45(1): 69-73. doi: 10.3969/j.issn.1008-4495.2018.01.016 |
[3] | AOSTA J A, FA Z A, MAR T M, et al. Multivariate statistical and GIS-based approach to evaluate heavy metals baviour in mine sites for future reclamation[J]. Journal of Geochemical Exploration, 2011, 109: 8-17. doi: 10.1016/j.gexplo.2011.01.004 |
[4] | PANDEY B, AGRAWAL M, SINGH S. Ecological risk assessment of soil contamination by trace elements around coal mining area[J]. Journal of Soils and Sediments, 2016, 16(1): 159-168. doi: 10.1007/s11368-015-1173-8 |
[5] | 高宇潇, 塔西甫拉提·特依拜, 夏楠, 等. 新疆准东五彩湾煤田区不同深度土壤重金属污染评价、来源分析与空间分布特征[J]. 中国矿业, 2016, 25(9): 74-81. doi: 10.3969/j.issn.1004-4051.2016.09.017 |
[6] | 王显炜, 徐友宁, 杨敏, 等. 国内外矿山土壤重金属污染风险评价方法综述[J]. 中国矿业, 2009, 18(10): 54-56. doi: 10.3969/j.issn.1004-4051.2009.10.018 |
[7] | 张开军, 魏迎春, 徐友宁. 小秦岭金矿区土壤重金属生物有效性与影响因素[J]. 地质通报, 2014, 33(8): 1182-1187. doi: 10.3969/j.issn.1671-2552.2014.08.012 |
[8] | 陈明, 杨涛, 徐慧, 等. 赣南某钨矿区土壤中Cd、Pb的形态特征及生态风险评价[J]. 环境化学, 2015, 34(12): 2257-2262. doi: 10.7524/j.issn.0254-6108.2015.12.2015070201 |
[9] | WANG Q, LIU J F, CHEN Z, et al. A causation-based method developed for an integrated risk assessment of heavy metals in soil[J]. Science of the Total Environment, 2018, 642: 1396-1405. doi: 10.1016/j.scitotenv.2018.06.118 |
[10] | 陈莹. 陕西西部矿区土壤重金属污染与生态风险评价[J]. 环境与发展, 2017, 29(7): 35-36. |
[11] | SEBEI A, HELALI M A, OUESLATI W, et al. Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia[J]. Journal of African Earth Sciences, 2018, 137: 1-8. doi: 10.1016/j.jafrearsci.2017.09.005 |
[12] | SUNDARY S K, NAYAK B B, LIN S, et al. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments: A case study: Mahanadi basin, India[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1837-1846. |
[13] | FERNáNDEZ-ONDO?O E, BACCHETTA G, LALLEN A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172: 133-141. doi: 10.1016/j.gexplo.2016.09.013 |
[14] | ZHANG M K, LIU Z Y, HUO W. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. Communications in Soil Science & Plant Analysis, 2010, 41(7): 820-831. |
[15] | LIAO J, WEN Z, RU X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China[J]. Ecotoxicology and Environmental Safety, 2016, 124: 460-469. doi: 10.1016/j.ecoenv.2015.11.023 |
[16] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理员会. 土壤质量总汞、总砷、总铅的测定原子荧光法: GB/T 22105.2-2008[S]. 北京: 中国标准出版社, 2008. |
[17] | 国家环境保护局. 土壤质量铜、锌的测定火焰原子吸收分光光度法: GB/T 17138-1997[S]. 北京: 中国环境科学出版社, 1997. |
[18] | TOKALIO?LU ?, KARTAL ?, GüLTEKIN A. Investigation of heavy metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method[J]. International Journal of Environmental Analytical Chemistry, 2006, 86(6): 417-430. doi: 10.1080/03067310500352387 |
[19] | 柳云龙, 章立佳, 韩晓非, 等. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 2012, 33(2): 599-605. |
[20] | 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[21] | HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 |
[22] | 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971-984. |
[23] | 熊秋林, 赵佳茵, 赵文吉, 等. 北京市地表土重金属污染特征及潜在生态风险[J]. 中国环境科学, 2017, 37(6): 2211-2221. doi: 10.3969/j.issn.1000-6923.2017.06.028 |
[24] | LIU J L, LI Y L, ZHANG B, et al. Ecological risk of heavy metals in sediments of the Luan River source water[J]. Ecotoxicology, 2009, 18(6): 748-758. doi: 10.1007/s10646-009-0345-y |
[25] | 高彦鑫, 冯金国, 唐磊, 等. 密云水库上游金属矿区土壤中重金属形态分布及风险评价[J]. 环境科学, 2012, 33(5): 1707-1717. |
[26] | 迪娜·吐尔生江, 李典鹏, 胡毅, 等. 新疆奴拉赛铜矿周边土壤理化特征和重金属污染生态风险评价[J]. 农业资源与环境学报, 2018, 35(1): 17-23. |
[27] | 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018. |
[28] | 李如忠, 徐晶晶, 姜艳敏, 等. 铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J]. 环境科学研究, 2013, 26(1): 88-96. |
[29] | LIU J J, NI Z X, DIAO Z H, et al. Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay, South China Sea[J]. Marine Pollution Bulletin, 2018, 128: 132-139. doi: 10.1016/j.marpolbul.2018.01.021 |
[30] | 李忠义, 张超兰, 邓超冰, 等. 铅锌矿区农田土壤重金属有效态空间分布及其影响因子分析[J]. 生态环境学报, 2009, 18(5): 1772-1776. doi: 10.3969/j.issn.1674-5906.2009.05.033 |
[31] | 方月梅, 张晓玲, 刘娟, 等. 湖北省铜绿山矿区农业土壤重金属形态及生物有效性[J]. 地球与环境, 2017, 45(6): 634-642. |
[32] | ERIKSSON J E. The influence of pH, soil type and time on adsorption and by plants of Cd added to the soil[J]. Water, Air and Soil Pollution, 1989, 48(3/4): 317-335. |
[33] | 江嵩鹤, 胡恭任, 于瑞莲, 等. 安溪铁观音茶园土壤重金属赋存形态及生态风险评价[J]. 地球与环境, 2016, 44(3): 359-369. |