Abstract:In view of the problem of cadmium pollution in farmland soil, phytoremediation technology has become a research hotspot. Pot experiments and field trials were conducted using a kind of hyperaccumulator Amaranthus hypochondriacus L. and different combinations of exogenous activators. The cadmium contents in Amaranthus hypochondriacus L. and root soil were tested and the corresponding enrichment factors were determined. The results showed that in different treatment groups of the pot experiment, the most helpful effect for the improvement of Cd extraction and restoration efficiency occurred at potassium dihydrogen phosphate (0.1 g·kg-1), EDTA (ethylenediaminetetraacetic acid) (2 mmol·kg-1) and citric acid (4 mmol·kg-1). The addition of activators (EDTA and citric acid) in the field trials showed that Cd enrichment abilities of roots, stems and leaves of Amaranthus hypochondriacus L. were 2.10, 1.84 and 2.76 times as high as those without activator, respectively. In comparison with the control group, the contents of Cd in the roots, stems and leaves of the Amaranthus hypochondriacus L. increased significantly (P < 0.05), indicating that the exogenous activator promoted the absorption of Cd in the soil by the Amaranthus hypochondriacus L. and improved the repair efficiency. Amaranthus hypochondriacus L. is planted twice every year and activator is added. The Cd removal rate is 4%~10%. Planting Amaranthus hypochondriacus L. in combination with an activator can both improve the repair efficiency and save the repair cost. Key words:Amaranthus hypochondriacus L./ cadmium/ farmland soil/ activator/ phytoremediation.
图1盆栽实验中各处理组对籽粒苋生物量的影响 Figure1.Effect of various treatments on Amaranthus hypochondriacus L. biomass in a pot experiment
表1供试土壤基本性质 Table1.Basic properties of the tested soil
pH
全Cd/(mg·kg-1)
有效态Cd/(mg·kg-1)
有机质/(g·kg-1)
碱解氮/(mg·kg-1)
有效磷/(mg·kg-1)
速效钾/(mg·kg-1)
6.5
0.71
0.12
23.5
100.3
0.36
1 213
pH
全Cd/(mg·kg-1)
有效态Cd/(mg·kg-1)
有机质/(g·kg-1)
碱解氮/(mg·kg-1)
有效磷/(mg·kg-1)
速效钾/(mg·kg-1)
6.5
0.71
0.12
23.5
100.3
0.36
1 213
下载: 导出CSV 表2田间实验添加活化剂前后籽粒苋根、茎和叶Cd含量(鲜重) Table2.Cadmium content in roots, stems and leaves of plant before and after the addition of activating agents in the field trial (fresh weight
mg·kg-1
植株序号
根
茎
叶
修复前
修复后
修复前
修复后
修复前
修复后
1
0.141
0.174
0.173
0.344
0.232
0.348
2
0.147
0.429
0.269
0.417
0.321
0.775
3
0.147
0.452
0.269
0.348
0.321
0.740
4
0.139
0.305
0.093
0.318
0.217
0.220
5
0.081
0.327
0.058
0.332
0.217
0.325
6
0.104
0.617
0.081
0.116
0.211
0.232
7
0.617
0.637
0.176
0.394
0.233
0.996
8
0.237
0.406
0.222
0.313
0.272
1.424
9
0.237
0.278
0.174
0.205
0.226
0.568
10
0.133
0.347
0.093
0.112
0.221
0.289
11
0.112
0.116
0.081
0.143
0.210
0.278
12
0.104
0.146
0.142
0.221
0.229
0.266
13
0.104
0.230
0.081
0.227
0.307
0.406
14
0.194
0.208
0.155
0.174
0.265
0.476
15
0.081
0.225
0.186
0.209
0.284
0.567
16
0.115
0.174
0.150
0.263
0.347
0.523
17
0.185
0.232
0.162
0.211
0.240
0.429
18
0.151
0.317
0.139
0.323
0.405
0.425
19
0.218
0.532
0.252
0.428
0.299
1.133
20
0.179
0.440
0.417
0.479
0.350
1.287
21
0.116
0.339
0.104
0.304
0.357
0.532
22
0.257
0.289
0.274
0.324
0.409
0.926
23
0.231
0.824
0.247
0.777
0.198
3.251
24
0.231
0.859
0.247
0.729
0.198
2.246
25
0.127
0.281
0.093
0.249
0.356
0.474
平均含量
0.176
0.367
0.173
0.318
0.277
0.766
mg·kg-1
植株序号
根
茎
叶
修复前
修复后
修复前
修复后
修复前
修复后
1
0.141
0.174
0.173
0.344
0.232
0.348
2
0.147
0.429
0.269
0.417
0.321
0.775
3
0.147
0.452
0.269
0.348
0.321
0.740
4
0.139
0.305
0.093
0.318
0.217
0.220
5
0.081
0.327
0.058
0.332
0.217
0.325
6
0.104
0.617
0.081
0.116
0.211
0.232
7
0.617
0.637
0.176
0.394
0.233
0.996
8
0.237
0.406
0.222
0.313
0.272
1.424
9
0.237
0.278
0.174
0.205
0.226
0.568
10
0.133
0.347
0.093
0.112
0.221
0.289
11
0.112
0.116
0.081
0.143
0.210
0.278
12
0.104
0.146
0.142
0.221
0.229
0.266
13
0.104
0.230
0.081
0.227
0.307
0.406
14
0.194
0.208
0.155
0.174
0.265
0.476
15
0.081
0.225
0.186
0.209
0.284
0.567
16
0.115
0.174
0.150
0.263
0.347
0.523
17
0.185
0.232
0.162
0.211
0.240
0.429
18
0.151
0.317
0.139
0.323
0.405
0.425
19
0.218
0.532
0.252
0.428
0.299
1.133
20
0.179
0.440
0.417
0.479
0.350
1.287
21
0.116
0.339
0.104
0.304
0.357
0.532
22
0.257
0.289
0.274
0.324
0.409
0.926
23
0.231
0.824
0.247
0.777
0.198
3.251
24
0.231
0.859
0.247
0.729
0.198
2.246
25
0.127
0.281
0.093
0.249
0.356
0.474
平均含量
0.176
0.367
0.173
0.318
0.277
0.766
下载: 导出CSV 表3田间实验中活化组与对照组籽粒苋各指标的对比(含量以鲜重计) Table3.Comparison of various indicators of plant in the activation group and the control group in the field trials(content is based on fresh weight)
统计值
株高/cm
根/(mg·kg-1)
茎/(mg·kg-1)
叶/(mg·kg-1)
活化组
对照组
活化组
对照组
活化组
对照组
活化组
对照组
样本数
25
22
25
22
25
22
25
22
极小值
122
105
0.081
0.035
0.058
0.035
0.220
0.104
极大值
195
235
0.859
0.289
0.777
0.372
3.251
1.251
均值
153
157
0.294
0.153
0.251
0.162
0.765
0.495
几何均值
152
155
0.226
0.121
0.192
0.123
0.584
0.362
统计值
株高/cm
根/(mg·kg-1)
茎/(mg·kg-1)
叶/(mg·kg-1)
活化组
对照组
活化组
对照组
活化组
对照组
活化组
对照组
样本数
25
22
25
22
25
22
25
22
极小值
122
105
0.081
0.035
0.058
0.035
0.220
0.104
极大值
195
235
0.859
0.289
0.777
0.372
3.251
1.251
均值
153
157
0.294
0.153
0.251
0.162
0.765
0.495
几何均值
152
155
0.226
0.121
0.192
0.123
0.584
0.362
下载: 导出CSV 表4田间实验中添加活化剂与对照组农田土壤各指标的对比 Table4.Comparison of the farmland soil indicators between the addition of activating agents and the control group in the field trials
ZHENG N, WANG Q, ZHENG D. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables[J]. Science of the Total Environment, 2007, 383(1): 81-89.
CHANDRA S K, KAMALA C T, CHARY N S, et al. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils[J]. Chemosphere, 2005, 58(4): 507-514. doi: 10.1016/j.chemosphere.2004.09.022
ABBAS S T, SARFRAZ M, MEHDI S M, et al. Trace elements accumulation in soil and rice plants irrigated with the contaminated water[J]. Soil & Tillage Research, 2007, 94(2): 503-509.
[10]
BROWN S L R L C, ANGLE J S, BAKER A J M. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1993, 23: 1151-1157.
WENZEL W W, JOCKWER F. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps[J]. Environmental Pollution, 1999, 104(1): 145-155. doi: 10.1016/S0269-7491(98)00139-0
DAHMANI M H, OORT F V, GELIE B, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter[J]. Environmental Pollution, 2000, 109(2): 231-238. doi: 10.1016/S0269-7491(99)00262-6
[16]
SUN Y B, ZHOU Q X, LIU W T, et al. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidenspilosa L[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1023-1028.
1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China 2.University of Chinese Academy of Science, Beijing 100049, China Received Date: 2018-10-16 Accepted Date: 2019-04-08 Available Online: 2019-09-30 Keywords:Amaranthus hypochondriacus L./ cadmium/ farmland soil/ activator/ phytoremediation Abstract:In view of the problem of cadmium pollution in farmland soil, phytoremediation technology has become a research hotspot. Pot experiments and field trials were conducted using a kind of hyperaccumulator Amaranthus hypochondriacus L. and different combinations of exogenous activators. The cadmium contents in Amaranthus hypochondriacus L. and root soil were tested and the corresponding enrichment factors were determined. The results showed that in different treatment groups of the pot experiment, the most helpful effect for the improvement of Cd extraction and restoration efficiency occurred at potassium dihydrogen phosphate (0.1 g·kg-1), EDTA (ethylenediaminetetraacetic acid) (2 mmol·kg-1) and citric acid (4 mmol·kg-1). The addition of activators (EDTA and citric acid) in the field trials showed that Cd enrichment abilities of roots, stems and leaves of Amaranthus hypochondriacus L. were 2.10, 1.84 and 2.76 times as high as those without activator, respectively. In comparison with the control group, the contents of Cd in the roots, stems and leaves of the Amaranthus hypochondriacus L. increased significantly (P < 0.05), indicating that the exogenous activator promoted the absorption of Cd in the soil by the Amaranthus hypochondriacus L. and improved the repair efficiency. Amaranthus hypochondriacus L. is planted twice every year and activator is added. The Cd removal rate is 4%~10%. Planting Amaranthus hypochondriacus L. in combination with an activator can both improve the repair efficiency and save the repair cost.
全文HTML
--> --> --> 土壤是人类生存和发展不可替代的物质基础。随着我国经济快速发展,土壤环境日渐遭到破坏,农田土壤环境质量亟待拯救,而重金属污染是农田土壤污染的主要类型[1-3]。镉(Cd)在环境中难以被降解,存留时间长,经过食物链等各种途径可以进入人体,并对人类健康产生威胁。土壤中Cd主要来源于自然因素和人为活动(各种废气的排放、农业施肥和含Cd废水的排放)[4-6]。 植物修复技术是近20年来刚刚发展起来的一种新型污染治理技术[7],是利用某些可以忍耐和超富集有毒元素的植物去除污染物的一门技术,因其稳定、对环境扰动少、无二次污染而被广泛研究,对富集植物的选择是其中最重要的研究内容[8-10]。目前,国内外已经发现和筛选的能超富集Cd的植物有天蓝遏蓝菜[10]、东南景天[11]、圆叶遏蓝菜[12]、龙葵[13]、商陆[14]、巴丽芥菜[15]、三叶鬼针草[16]等。 工程应用中要求所用植物具有富集能力强、生长速度快、生物量大、易于栽培和生命力旺盛等特点,较为成熟的Cd污染农田土壤植物修复案例鲜有报道。籽粒苋(Amaranthus hypochondriacus L.) [17]是一种耐干旱、耐贫瘠、耐盐碱、产量高的植物,其对土壤Cd有一定的富集能力。本研究选择阳朔[6]Cd污染农田作为田间实验区,选择籽粒苋作为修复植物,探讨了其修复农田镉污染土壤的修复效率。