删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

热电厂双膜法中水深度处理回用系统膜污染机制分析

本站小编 Free考研考试/2021-12-31

郑利兵1,2,3,,
张春1,
夏森4,
梁国良4,
郁达伟1,2,
王钢5,
岳增刚5,
魏源送1,2,3,
1.中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
2.中国科学院生态环境研究中心,水污染控制实验室,北京 100085
3.中国科学院大学,北京 100049
4.华能济宁电厂,济宁 272121
5.华能嘉祥发电有限公司,济宁 272400
基金项目: 国家重点研发计划政府间国际科技创新合作重点专项2016YFE0118500
江西省重点研发项目S2017ZPYFE0411国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0118500)
江西省重点研发项目(S2017ZPYFE0411)




Membrane fouling characterization and mechanism of a full-scale dual membrane process for advanced treatment and reuse of reclaimed water in a thermal power plant

ZHENG Libing1,2,3,,
ZHANG Chun1,
XIA Sen4,
LIANG Guoliang4,
YU Dawei1,2,
WANG Gang5,
YUE Zenggang5,
WEI Yuansong1,2,3,
1.State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.Huaneng Jining Power Generation Co.Ltd., Jining 272121, China
5.Huaneng Jiaxiang Power Generation Co.Ltd., Jining 272400, China

-->

摘要
HTML全文
(0)(0)
参考文献(20)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以某热电厂实际规模的双膜法中水回用系统为考察对象,对膜污染结构、形貌、组成与特征进行了研究。结果表明:污染物以有机-无机-微生物复合形式存在,形成致密的膜污染层,无机物主要以P、S、Ca、Si、Mg为主,存在垂直分布特征;有机污染物以腐殖质类、蛋白质、微生物代谢产物为主,且研究发现RO过程富里酸类物质主要为微生物源。碱性清洗液具有更佳的膜污染清洗效果。通过分析可知:微生物污染是膜污染暴发的关键原因,其以杆菌和球菌为主,且具有显著的垂直分布特征;表层微生物主要是α和β变形菌,底层中γ变形菌丰度显著增加。微生物污染垂直分布的主要原因是杀菌和化学清洗过程的选择作用,γ变形菌是先锋微生物,是形成稳定膜污染层的关键物种。因此,控制微生物的滋生是RO中水深度处理的关键,这个过程主要包括预处理工艺的选择和优化杀菌、阻垢和化学清洗策略等。
关键词: 反渗透/
中水回用/
膜污染/
微生物群落结构/
垂直分布

Abstract:Membrane fouling is a key issue in reclaimed water reuse with reverse osmosis (RO), but the fouling characterization and mechanism are still lacking for a full-scale RO water reuse system. In this study, a full-scale dual-membrane process for reclaimed water reuse in thermal power plant in China was taken as an object to investigate the structure, morphology, composition and characterization of membrane fouling. The results showed that the tight fouling layer was formed by the combination of inorganic and organic matters (OMs), as well as microbes. The main inorganic components were P, S, Ca, Si, Mg, which presented a vertical distribution in the fouling layer. The organic fouling matters were mainly identified as humic substances, proteins and microbial metabolites, while microbe-derived fulvic acid was the key OM in RO process. Alkaline reagent showed a better cleaning performance for membrane fouling. Furthermore, biofouling was the key reason for the outbreak of membrane fouling, and rod- and spherical-shaped bacteria was the main fouling matters. A remarkable vertical distribution was found for microbial community, α- and β-proteobacteria showed high abundance on the surface of fouling layer, while γ-proteobacteria was the leading bacteria on the bottom. The sterilization and chemical cleaning process played the selection role for the vertical distribution formation, and γ-proteobacteria was the pioneering and key bacterium for the stable fouling occurrence due to its strong bactericide tolerance. Thus, bacteria control is a pivotal process for operation of a full-scale RO reclamation system, which includes pre-treatment technology selection and sterilization, scale inhibition, and chemical cleaning strategies optimization.
Key words:reverse osmosis/
reclaimed water reuse/
membrane fouling/
microbial community/
vertical distribution.

加载中
[1] 魏源送, 郑利兵, 张春, 等. 热电厂中水回用深度处理技术与国内应用进展[J]. 水资源保护, 2018, 34(6): 1-11.
[2] CHON K, KIM S J, MOON J, et al. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant[J]. Water Research, 2012, 46(6): 1803-1816.
[3] ZHENG L, YU D, WANG G, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization[J]. Journal of Membrane Science, 2018, 563: 843-856.
[4] GOOSEN M F A, SABLANI S S, ALHINAI H, et al. Fouling of reverse osmosis and ultrafiltration membranes: A critical review[J]. Separation Science and Technology, 2005, 39(10): 2261-2297.
[5] KHAMBHATY Y, PLUMB J. Characterization of bacterial population associated with a brackish water desalination membrane[J]. Desalination, 2011, 269(1): 35-40.
[6] LEE J, JUNG J Y, KIM S, et al. Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling[J]. Desalination, 2009, 247(1): 125-136.
[7] WU B, SUWARNO S R, TAN H S, et al. Gravity-driven microfiltration pretreatment for reverse osmosis (RO) seawater desalination: Microbial community characterization and RO performance[J]. Desalination, 2017, 418: 1-8.
[8] ZHANG J, YANG M, ZHONG H, et al. Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment[J]. Bioresource Technology, 2018, 265: 310-319.
[9] TANG F, HU H Y, SUN L J, et al. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation[J]. Water Research, 2016, 90: 329-336.
[10] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[11] LI L, LIU M, WU M, et al. Effects of duckweed (Spriodela polyrrhiza) remediation on the composition of dissolved organic matter in effluent of scale pig farms[J]. Journal of Environmental Sciences, 2017, 55: 247-256.
[12] KIM J, DIGIANO F A, REARDON R D. Autopsy of high-pressure membranes to compare effectiveness of MF and UF pretreatment in water reclamation[J]. Water Research, 2008, 42(3): 697-706.
[13] YU T, MENG L, ZHAO Q B, et al. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation[J]. Water Research, 2017, 113: 1-10.
[14] TAN Y J, SUN L J, LI B T, et al. Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand[J]. Desalination, 2017, 419: 1-7.
[15] HEYLEN K, LEBBE L, DEVOS P. Acidovorax caeni sp. nov. , a denitrifying species with genetically diverse isolates from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 73-77.
[16] 侯丽媛, 江经纬, 蒋建东, 等. 假黄单胞菌株J1的筛选及木质纤维素降解基因的生物信息学分析[J]. 南京农业大学学报, 2016, 39(4): 573-581.
[17] 徐慧敏, 闫海, 马松, 等. 鞘氨醇单胞菌USTB-05对微囊藻毒素的生物降解[J]. 中国环境科学, 2014, 34(5): 1316-1321.
[18] 贾东旭. Sphingopyxis sp. 113P3聚乙烯醇脱氢酶的异源高效表达研究[D]. 无锡: 江南大学, 2013.
[19] 刘国新. 焦化废水特征污染物的降解与微生物群落的演变过程[D]. 广州: 华南理工大学, 2017.
[20] 王钢, 岳增刚, 郑利兵, 等. 热电厂双膜法中水深度处理系统运行效果与问题分析[J]. 环境工程学报, 2019, 13(4): 773-783.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1289
HTML全文浏览数:1205
PDF下载数:84
施引文献:0
出版历程

刊出日期:2019-06-03




-->








热电厂双膜法中水深度处理回用系统膜污染机制分析

郑利兵1,2,3,,
张春1,
夏森4,
梁国良4,
郁达伟1,2,
王钢5,
岳增刚5,
魏源送1,2,3,
1.中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
2.中国科学院生态环境研究中心,水污染控制实验室,北京 100085
3.中国科学院大学,北京 100049
4.华能济宁电厂,济宁 272121
5.华能嘉祥发电有限公司,济宁 272400
基金项目: 国家重点研发计划政府间国际科技创新合作重点专项2016YFE0118500 江西省重点研发项目S2017ZPYFE0411国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0118500) 江西省重点研发项目(S2017ZPYFE0411)
关键词: 反渗透/
中水回用/
膜污染/
微生物群落结构/
垂直分布
摘要:以某热电厂实际规模的双膜法中水回用系统为考察对象,对膜污染结构、形貌、组成与特征进行了研究。结果表明:污染物以有机-无机-微生物复合形式存在,形成致密的膜污染层,无机物主要以P、S、Ca、Si、Mg为主,存在垂直分布特征;有机污染物以腐殖质类、蛋白质、微生物代谢产物为主,且研究发现RO过程富里酸类物质主要为微生物源。碱性清洗液具有更佳的膜污染清洗效果。通过分析可知:微生物污染是膜污染暴发的关键原因,其以杆菌和球菌为主,且具有显著的垂直分布特征;表层微生物主要是α和β变形菌,底层中γ变形菌丰度显著增加。微生物污染垂直分布的主要原因是杀菌和化学清洗过程的选择作用,γ变形菌是先锋微生物,是形成稳定膜污染层的关键物种。因此,控制微生物的滋生是RO中水深度处理的关键,这个过程主要包括预处理工艺的选择和优化杀菌、阻垢和化学清洗策略等。

English Abstract






--> --> --> 参考文献 (20)
相关话题/微生物 污染 过程 北京 结构