删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

型式结构对双曲面搅拌器流场影响的数值模拟

本站小编 Free考研考试/2021-12-31

莫惠珺1,,
范海涛1,2,
王明玥1,
余雨1,
张景炳1,
徐相龙1,
杨雅琼1,
王洪臣1,
1.中国人民大学环境学院,北京 100872
2.尚川北京水务有限公司,北京 100097
基金项目: 国家水体污染控制与治理科技重大专项2017ZX07102-003国家水体污染控制与治理科技重大专项(2017ZX07102-003)




Flow field numerical simulation of hyperbolic mixer with different structures

MO Huijun1,,
FAN Haitao1,2,
WANG Mingyue1,
YU Yu1,
ZHANG Jingbing1,
XU Xianglong1,
YANG Yaqiong1,
WANG Hongchen1,
1.School of Environment, Renmin University of China, Beijing 100872, China
2.Shine Water Limited Company, Beijing 100097, China

-->

摘要
HTML全文
(0)(0)
参考文献(17)
相关文章
施引文献
资源附件(0)
访问统计

摘要:基于多重参考系法(multiple reference frame model,MRF),采用标准k-ε模型对双曲面搅拌器的流场分布特性开展了数值模拟研究,重点对实心、空心、有孔和高叶片4种不同型式结构的双曲面搅拌器的流场结构、流速分布、湍动能分布、有效搅拌体积以及功耗特性进行了对比分析。结果表明,高叶片结构的双曲面搅拌器更有利于形成对称且均匀的流场,底部湍动更强烈,搅拌范围更广且混合效果最佳。在转速为200 r·min-1时,高叶片双曲面搅拌器达到搅拌要求时单位能耗分别仅为前3种结构的74.09%、61.19%和61.88%,其节能效果显著。
关键词: 双曲面搅拌器/
数值模拟/
型式结构

Abstract:In this study, on the basis of multiple reference frame (MRF) method, the standard k-ε model was used to conduct a numerical simulation analysis of the flow field distribution properties of the hyperboloid mixer. The flow filed pattern, velocity distribution, turbulent kinetic energy distribution, the effective stirring volume and power consumption in a stirred tank were compared among different hyperbolic mixers with solid, hollow, porous or high-blade structure. The results showed that the hyperboloid mixer with high-blade structure was more conducive to produce a symmetrical and evenly distributed flow field, more intense bottom turbulence, wider mixing range, and the best mixing effect. At 200 r·min-1 rotation rate, the unit power consumption of the high-blade structure hyperbolic mixer meeting the stirring requirement was only 74.09%, 61.19% and 61.88% of the former three mixers with different structures. It indicated that the high-blade was more energy efficient structure.
Key words:hyperboloid mixer/
numerical simulation/
structure patterns.

加载中
[1] ZLOKARNIK M. Stirring: Theory and Practice[M]. Weinheim: Wiley-VCH, 2007.
[2] PAN X, DING L, LUO P, et al. LES and PIV investigation of turbulent characteristics in a vessel stirred by a novel long-short blades agitator[J]. Chemical Engineering Science, 2018, 176: 343-355.
[3] 陈斌, 施卫东, 张华, 等. 双曲面搅拌机在沉淀池中的应用及流动数值研究[J]. 给水排水, 2012, 38(1): 152-155.
[4] PINHO F T, PIQUEIRO F M,PROENCLA M F, et al. Power and mean flow characteristics in mixing vessels agitated by hyperboloid stirrers[J].Canadian Journal of Chemical Engineering, 2010, 75(5): 832-842.
[5] PINHO F T, PIQUEIRO F M, PROENCA M F, et al. Turbulent flow in stirred vessels agitated by a single, low-clearance hyperboloid impeller[J]. Chemical Engineering Science, 2000, 55(16): 3287-3303.
[6] 王斌帆. 双曲面搅拌器反应池内流态分布及其影响因素分析[D]. 西安:西安建筑科技大学, 2015.
[7] 彭珍珍, 赵恒文, 郭聪聪,等. 双曲面搅拌机流场的数值模拟研究[J]. 中国给水排水, 2009, 25(19): 91-94.
[8] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
[9] 许卓, 赵恒文, 郑建坤. 桨式搅拌器安装高度对搅拌效果的数值模拟[J]. 机械制造与自动化, 2013, 42(2): 178-181.
[10] 马泽文, 刘涛, 孙旭东. 基于CFD的结晶搅拌反应釜流场分析与改进[J]. 系统仿真学报, 2018, 30(5): 284-291.
[11] 胡坤. ANSYS ICEM CFD工程实例详解[M]. 北京: 人民邮电出版社, 2014.
[12] ISMAIL Y, MCNEELY J B, SHAABAN M, et al. Fast motion estimation system using dynamic models for H.264/AVC video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(1): 28-42.
[13] CEES H, RUBEN V, MUDDE R F. Inter-compartment interaction in multi-impeller mixing: Part I: Experiments and multiple reference frame CFD[J]. Chemical Engineering Research and Design, 2018, 136: 870-885.
[14] BUJALSKI W, JAWORSKI Z, NIENOW A W. CFD study of homogenization with dual rushton turbines:Comparison with experimental results: Part II: The multiple reference frame[J]. Chemical Engineering Research & Design, 2002, 80(1): 97-104.
[15] 田飞, 施卫东, 卢熙宁, 等. 潜水搅拌机分布对污水处理池搅拌效果的影响[J]. 排灌机械工程学报, 2013, 31(2): 146-150.
[16] HOFKEN M, HUBER P, SCHAFER M, et al. Membrane aerators and stirring systems for the operation in large and small wastewater treatment plants[J]. Water Science & Technology, 1996, 34(3/4): 329-338.
[17] PAUL E L, ATIEMO-OBENG V A, KRESTA S M. Handbook of Industrial Mixing: Science and Practice[M]. Hoboken: John Wiley & Sons Inc., 2004.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1644
HTML全文浏览数:1569
PDF下载数:90
施引文献:0
出版历程

刊出日期:2019-06-03




-->








型式结构对双曲面搅拌器流场影响的数值模拟

莫惠珺1,,
范海涛1,2,
王明玥1,
余雨1,
张景炳1,
徐相龙1,
杨雅琼1,
王洪臣1,
1.中国人民大学环境学院,北京 100872
2.尚川北京水务有限公司,北京 100097
基金项目: 国家水体污染控制与治理科技重大专项2017ZX07102-003国家水体污染控制与治理科技重大专项(2017ZX07102-003)
关键词: 双曲面搅拌器/
数值模拟/
型式结构
摘要:基于多重参考系法(multiple reference frame model,MRF),采用标准k-ε模型对双曲面搅拌器的流场分布特性开展了数值模拟研究,重点对实心、空心、有孔和高叶片4种不同型式结构的双曲面搅拌器的流场结构、流速分布、湍动能分布、有效搅拌体积以及功耗特性进行了对比分析。结果表明,高叶片结构的双曲面搅拌器更有利于形成对称且均匀的流场,底部湍动更强烈,搅拌范围更广且混合效果最佳。在转速为200 r·min-1时,高叶片双曲面搅拌器达到搅拌要求时单位能耗分别仅为前3种结构的74.09%、61.19%和61.88%,其节能效果显著。

English Abstract






--> --> --> 参考文献 (17)
相关话题/结构 北京 科技 中国人民大学 环境学院