2.湖南省灌溉水源水质污染净化工程技术研究中心,长沙 410128
1.College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
2.Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China
针对水体重金属污染治理问题,通过十六烷基三甲基溴化铵(CTAB)对竹炭(BC)、椰壳炭(CSC)进行改性, 采用傅里叶红外变换光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱分析(XPS)和热稳定性分析(TGA)对改性前后的材料进行了表征,探究了投加量、pH对2种改性材料吸附去除水中镉离子性能的影响,并进行了动力学方程拟合及等温吸附模型拟合,探讨了CTAB改性前后活性炭吸附水中镉离子的机理。结果表明:2种CTAB改性材料基本结构虽未改变,但提升了竹炭(BC)和椰壳炭(CSC)的吸附性能,改性后材料的饱和吸附量分别为12.56 mg·g
(CTAB-CSC),较改性前分别提高了111%和92%;同时,CTAB-BC、CTAB-CSC的吸附量受pH影响较大,对二者的最适pH分别为4~7、6~7;CTAB-BC、CTAB-CSC均能较好地拟合准二级动力学方程(
=0.976 8)。通过分析可知,CTAB-CSC、CTAB-BC 2种材料对含镉废水均有较好的去除效果。
In this study, two kinds of biocarbons were prepared by modifying bamboo charcoal (BC) and coconut shell charcoal (CSC) with hexadecyl trimethyl ammonium bromide (CTAB) for heavy metal pollution control. FT-IR, SEM, XPS and TGA were used to characterize the charcoals before and after modification. The effects of dosage and pH on the adsorption performance for cadmium ion from aqueous solution by the modified biochar were investigated, and the adsorption behaviors were simulated by dynamic and isothermal adsorption models. Their corresponding adsorption mechanisms were also identified. The results showed the adsorption capacities of BC and CSC were significantly improved by modifying with CTAB, although their basic structures were not changed. The saturated cadmium ion adsorption capacities of CTAB-BC and CTAB-CSC were 12.56 mg·g
, which were 111% and 92% higher than those of BC and CSC, respectively. Besides, their adsorption capacities were greatly affected by pH, and the corresponding optimum pH ranges were 4~7 and 6~7, respectively. The cadmium ion adsorption by CTAB-BC and CTAB-CSC could be better fitted by quasi-secondary kinetic equations (
=0.976 8). Thus, both CTAB-CSC and CTAB-BC had good performance on the treatment of wastewater containing cadmium.
.
改性前后傅里叶红外谱图和X射线光电子能谱图
FT-IR and XPS spectra of biochar before and after modification
CSC,BC,CTAB-CSC和CTAB-BC电镜图
SEM images of CSC, BC, CTAB-CSC and CTAB-BC
XPS spectra of carbon element core orbit
XPS spectra of oxygen element core orbit
XPS spectra of cadmium element core orbit
TGA curves of CTAB-CSC and CTAB-BC
Effect of adsorbent dosage on adsorption
Effect of solution pH on adsorption
Adsorption kinetics experimental results
Adsorption kinetics fitting curve
Langmuir和Freundlich吸附等温线
Desorption and regeneration results
[1] | XU M, HADI P, CHEN G, et al. Removal of cadmium ions from wastewater using innovative electronic waste-derived material[J]. Journal of Hazardous Materials, 2014, 273(3): 118-123. |
[2] | MAHDAVINIA G R, RAHMANI Z, KARAMI S, et al. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: Preparation, swelling behavior, and drug delivery[J]. Journal of Biomaterials Science (Polymer Edition), 2014, 25(17): 1891-1906. doi: 10.1080/09205063.2014.956166 |
[3] | 范荣桂, 郜秋平, 高海娟. 吸附法处理废水中砷的研究现状及进展[J]. 工业水处理, 2013, 33(4): 10-12. doi: 10.3969/j.issn.1005-829X.2013.04.003 |
[4] | SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws: Characterization and Cd(II) removal potential[J]. Ecotoxicology & Environmental Safety, 2014, 106(2): 226-231. |
[5] | CEHUI M, TANG W Q, PASCASIE N, et al. Removal of heavy metals from sewage sludge by low costing chemical method and recycling in agriculture[J]. Journal of Environmental Sciences, 1998, 10(1): 124-130. |
[6] | WU W, LI J, TIAN L, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation[J]. Science of the Total Environment, 2017, 576: 766-774. doi: 10.1016/j.scitotenv.2016.10.163 |
[7] | 马天行, 杨琛, 江鲜英, 等. 纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178 |
[8] | 王静, 陈光辉, 陈建, 等. 巯基改性活性炭对水溶液中汞的吸附性能研究[J]. 环境工程学报, 2009, 3(2): 219-222. |
[9] | 陈维芳, 王宏岩, 于哲, 等. 阳离子表面活性剂改性的活性炭吸附砷(V)和砷(Ⅲ)[J]. 环境科学学报, 2013, 33(12): 3197-3204. |
[10] | 江湛如, 汤媛媛, 李冰玉, 等. 磁性海藻酸铁介孔碳微球的合成及对水体中砷的去除[J]. 环境科学学报, 2018, 38(6): 2382-2392. |
[11] | YANTASEE W, LIN Y, ALFORD K L, et al. Electrophilic aomatic substitutions of amine and sulfonate onto fine-grained activated carbon for aqueous-phase metal ion removal[J]. Separation Science and Technology, 2004, 39(14): 3263-3279. doi: 10.1081/SS-200033140 |
[12] | CHEN Y, PAN B, LI H, et al. Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters[J]. Environmental Science & Technology, 2010, 44(9): 3508-3513. |
[13] | LIU W J, ZENG F X, JIANG H, et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia, biomass modified by SOCl2 activated EDTA[J]. Chemical Engineering Journal, 2011, 170(1): 21-28. doi: 10.1016/j.cej.2011.03.020 |
[14] | 张国珍, 高小波, 武福平, 等. 十六烷基三甲基溴化铵改性沸石对腐殖酸的吸附性能研究[J]. 环境污染与防治, 2016, 38(5): 12-17. |
[15] | HUESO J L, ESPINOS J P, CABALLERO A, et al. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas[J]. Carbon, 2007, 45(1): 89-96. doi: 10.1016/j.carbon.2006.07.021 |
[16] | ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. doi: 10.1016/j.carbon.2006.11.019 |
[17] | WU Z, ZHONG H, YUAN X, et al. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater[J]. Water Research, 2014, 67: 330-344. doi: 10.1016/j.watres.2014.09.026 |
[18] | LIM S F, ZHENG Y M, ZOU S W, et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study[J]. Environmental Science & Technology, 2008, 42(7): 2551-2556. |
[19] | BADRUDDOZA A Z, TAY A S, TAN P Y, et al. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies[J]. Journal of Hazardous Materials, 2011, 185(2): 1177-1186. |
[20] | BELANGER D, TOUPIN M. Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations[J]. Langmuir, 2008, 24(5): 1910-1917. doi: 10.1021/la702556n |
[21] | ZHENG J C, FENG H M, LAM H W, et al. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 780-785. |
[22] | TATY-COSTODES V C, FAUDUENT H, PORTE C, et al. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris[J]. Journal of Hazardous Materials, 2003, 105(1/2/3): 121-142. |
[23] | 江美琳, 金辉, 邓聪, 等. 生物炭负载Fe3O4纳米粒子的制备与表征[J]. 农业环境科学学报, 2018, 37(3): 592-597. doi: 10.11654/jaes.2017-1266 |
[24] | 陈镜泓, 李传儒. 热分析及其应用[M]. 北京: 科学出版社, 1985. |
[25] | 朱恂, 李刚, 冯云鹏, 等. 重庆地区7种生物质的成分分析及热重实验[J]. 重庆大学学报, 2006, 29(8): 44-48. doi: 10.11835/j.issn.1000-582X.2006.08.012 |
[26] | ZHAO D, YANG X, ZHANG H, et al. Effect of environmental conditions on Pb(II) adsorption on β-MnO2[J]. Chemical Engineering Journal, 2010, 164(1): 49-55. doi: 10.1016/j.cej.2010.08.014 |
[27] | 程启明, 黄青, 刘英杰, 等. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33(10): 2022-2029. doi: 10.11654/jaes.2014.10.020 |
[28] | DADA A O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk[J]. IOSR Journal of Applied Chemistry, 2012, 3(1): 38-45. doi: 10.9790/5736 |
[29] | 郜礼阳, 邓金环, 唐国强, 等. 不同温度桉树叶生物炭对Cd2+的吸附特性及机制[J]. 中国环境科学, 2018, 38(3): 1001-1009. doi: 10.3969/j.issn.1000-6923.2018.03.025 |