2.中国科学院大学,北京 100049
1.Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
经过好氧处理后,污水中有机碳通常被降解去除进而影响后续反硝化的进行。为了解决反硝化因缺少碳源受到抑制的问题,设计了3组人工湿地作为好氧单元出水的深度处理系统,并添加原污水作为反硝化碳源。3组人工湿地均由潮汐流人工湿地和潜流人工湿地叠置而成,编号分别为CW1、CW2和CW3,其中CW1、CW3为下行-上行复合流,CW2为下行单向流;CW2、CW3表层种植美人蕉(
-N的处理效果最好,对TN的去除效果最差,平均去除率分别为91.5%和38.3%;CW3能够明显提高TN和TP的处理效果,平均去除率分别为69.9%和62.2%。复合流和种植美人蕉能够明显提高系统对污染物的综合处理性能,这对于优化人工湿地设计以及低C/N生活污水的深度脱氮均有重要的借鉴意义。
After aerobic treatment, organic carbon is normally depleted which limits the subsequent denitrification. Therefore, three new type constructed wetlands (CWs) named as CW1, CW2 and CW3, combining tidal flow constructed wetland (TFCW) and subsurface flow constructed wetland (SSFCW), were constructed to treat effluent from aerobic unit with raw sewage as organic carbon source. In these three CWs,
was planted on the top surface of CW2 and CW3, down-up compound flow was used in CW1 and CW3, while one-way flow was used in CW2. At hydraulic loading rate of 30 cm·d
, COD removal efficiencies by all CWs were about 70%. The average removal efficiencies of NH
-N, TN and TP by CW1 were 71.2%, 51.7% and 35.9%, respectively. CW2 had the best performance on NH
-N removal (91.5%) and the worst performance on TN removal (38.3%). Comparably, CW3 could remove 69.9% of TN and 62.2% of TP in average, which were higher than CW1 and CW2. Consequently, better comprehensive removal efficiencies of pollutants were achieved in CW3 with compound flow and
, which could provide useful information for optimizing the design of constructed wetlands and the advanced treatment of domestic sewage with low C/N ratio.
.
Schematic diagram of experimental devices
X-ray diffraction (XRD) patterns of filter material
-N adsorption capacities of top filter material
Water quality of every outlet and final removal efficiency of three CWs
[1] | 段先月, 唐朝春, 吴庆庆, 等.农村污水现状及处理技术研究进展[J].水处理技术, 2018, 44(9): 27-31. |
[2] | ZOU J, GUO X S, HAN Y P, et al. Study of a novel vertical flow constructed wetland system with drop aeration for rural wastewater treatment[J]. Water, Air & Soil Pollution, 2012, 223(2): 889-900. |
[3] | 易齐涛, 李慧, 章磊, 等.厌氧/生物滤池/潜流人工湿地组合工艺处理农村生活污水效果评估[J].环境工程学报, 2016, 10(5): 2394-2400. |
[4] | 张亚琼, 崔丽娟, 李伟, 等.潮汐流人工湿地基质硝化反硝化强度研究[J].生态环境学报, 2015, 24(3): 480-483. |
[5] | 郑晓英, 乔露露, 王慰, 等.碳源对反硝化生物滤池运行及微生物种群的影响[J].环境工程学报, 2018, 12(5): 1434-1442. |
[6] | 曹相生, 钱栋, 孟雪征.乙酸钠为碳源时的污水反硝化规律研究[J].中国给水排水, 2011, 27(21): 76-79. |
[7] | 邵留, 徐祖信, 金伟, 等.农业废物反硝化固体碳源的优选[J].中国环境科学, 2011, 31(5): 748-754. |
[8] | 李乐乐, 张卫民, 何江涛, 等.玉米秸秆碳源释放特征及反硝化效果[J].环境工程学报, 2015, 9(1): 113-118. |
[9] | 夏艳阳, 崔理华, 黄小龙.污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J].环境工程学报, 2017, 11(1): 638-644. |
[10] | TORRIJOS V, GONZALO O G, TRUEBA-SANTISO A, et al. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment[J]. Water Reseach, 2016, 103: 92-100. doi: 10.1016/j.watres.2016.07.028 |
[11] | 余灿.改良A2/O碳源分流比及外加黄水补充碳源可行性研究[D].武汉: 武汉理工大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10497-1012406060.htm |
[12] | WANG Z, HUANG M L, QI R, et al. Enhancing nitrogen removal via the complete autotrophic nitrogen removal over nitrite process in a modified single-stage tidal flow constructed wetland[J]. Ecological Engineering, 2017, 103: 170-179. doi: 10.1016/j.ecoleng.2017.04.005 |
[13] | 胡沅胜, 赵亚乾, 赵晓红.强化总氮去除的改进型潮汐流人工湿地[J].中国给水排水, 2015, 31(15): 133-138. |
[14] | JU X X, WU S B, ZHANG Y S, et al. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system[J]. Water Research, 2014, 59(4): 37-45. |
[15] | ZHI W, JI G D. Quantitative response rslationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035 |
[16] | CUI L H, OUYANG Y, LOU Q, et al. Removal of nutrients from wastewater with Canna india L. under different vertical-flow constructed wetland conditions[J]. Ecological Engineering, 2010, 36(8): 1083-1088. doi: 10.1016/j.ecoleng.2010.04.026 |
[17] | YANG Y Q, ZHAN X, WU S J, et al. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface in infiltration system under intermittent operation and micropower aeration[J]. Bioresource Technology, 2016, 205: 174-182. doi: 10.1016/j.biortech.2015.12.088 |
[18] | 鲁如坤.土壤农业化学分析方法[M]. 2版.北京:中国农业科技出版社, 1992: 309-310. |
[19] | KIZITO S, LV T, WU S B, et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of the Total Environment, 2017, 592: 197-205. doi: 10.1016/j.scitotenv.2017.03.125 |
[20] | 干方群, 周健民, 王火焰, 等.黏土矿物对磷的吸附性能及其在水体净化中的应用[J].农业环境科学学报, 2007, 26(增刊): 447-453. |
[21] | 杨兴胜.高岭石和酸化高岭石对F、NH3-N、Cr吸附性能探讨[J].中国农学通报, 2014, 30(3): 168-172. |
[22] | WU H M, ZHANG J, GUO W S, et al. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: A case study in northern China[J]. Bioresource Technology, 2018, 249: 1092-1096. doi: 10.1016/j.biortech.2017.10.099 |
[23] | 祝志超, 缪恒锋, 崔健, 等.组合人工湿地系统对污水处理厂二级出水的深度处理效果[J].环境科学研究, 2018, 31(12): 2028-2036. |
[24] | 廖波, 林武.强化型垂直流人工湿地用于污水处理厂尾水深度处理[J].中国给水排水, 2013, 29(16): 74-77. |
[25] | 刘昌伟, 薛晨, 杨永哲, 等.新型潮汐流人工湿地深度处理生活污水的研究[J].中国给水排水, 2012, 28(11): 10-13. doi: 10.3969/j.issn.1000-4602.2012.11.003 |
[26] | WEI C J, WU W Z. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment[J]. Chemosphere, 2018, 206: 579-586. doi: 10.1016/j.chemosphere.2018.05.035 |
[27] | ZHU H, YAN B X, XU Y Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018 |
[28] | 刘庚, 李胜男, 黄磊, 等. COD/N对潜流人工湿地脱氮效能及N2O排放的影响[J].环境工程学报, 2016, 10(12): 6907-6913. doi: 10.12030/j.cjee.201507170 |
[29] | VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Sciences of the Total Environment, 2007, 380(1/2/3): 48-65. |
[30] | LIMA M X, CARVALHO K Q, PASSIG F H, et al. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions[J]. Sciences of the Total Environment, 2018, 630: 1365-1373. doi: 10.1016/j.scitotenv.2018.02.342 |
[31] | 尉中伟, 王晓昌, 郑于聪, 等.水平潜流人工湿地脱氮功效中植物的作用[J].环境工程学报, 2015, 9(2): 595-602. |
[32] | LIU F F, FAN J, DU J, et al. Intensified nitrogen transformation in intermittently aerated constructed wetlands: Removal pathways and microbial response mechanism[J]. Sciences of the Total Environment, 2019, 650: 2880-2887. doi: 10.1016/j.scitotenv.2018.10.037 |
[33] | WANG J X, TAI Y P, MAN Y, et al. Capacity of various single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China[J]. Ecological Engineering, 2018, 115: 35-44. doi: 10.1016/j.ecoleng.2018.02.008 |
[34] | 李洁, 吕锡武, 谢静.水培番茄滤床-折流板式潜流湿地深度净化农村生活污水[J].环境工程学报, 2016, 10(8): 4018-4024. |