删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

淡水系统中甲烷厌氧氧化古菌的研究进展

本站小编 Free考研考试/2021-12-31

翟俊1,,
李媛媛1,
何孟狄2,
马宏璞1,
戴元贵1
1.重庆大学,三峡库区生态环境教育部重点实验室,重庆 400045
2.中国市政工程西南设计研究总院有限公司,成都 610081
基金项目: 国家自然科学基金资助项目51478062, 51878093国家自然科学基金资助项目(51478062, 51878093)




Review on the research progress of archaeal anaerobic methanotrophs in freshwater system

ZHAI Jun1,,
LI Yuanyuan1,
HE Mengdi2,
MA Hongpu1,
DAI Yuangui1
1.Key Laboratory of the Three Gorges Reservoir Region s Eco-Environment, Chongqing University, Chongqing 400045, China
2.Southwest Municipal Engineering Design and Research Institute of China, Chengdu 610081, China

-->

摘要
HTML全文
(0)(0)
参考文献(75)
相关文章
施引文献
资源附件(0)
访问统计

摘要:甲烷厌氧氧化古菌(ANMEs)是甲烷厌氧氧化过程中的重要微生物种群,对自然生境甲烷削减的意义重大,目前研究多集中在海洋系统,而关于ANMEs古菌在淡水系统的研究较少,其相关作用机理和工程应用的研究也尚处于初步阶段。在综合文献及前期研究基础上,介绍了ANMEs为主线的淡水系统甲烷厌氧氧化机制,分析了ANMEs的微生物学特性及地理分布,系统梳理了ANME-2d古菌针对不同电子受体(NO3-、Fe3+、Cr6+等)的电子转移体系研究进展;指出了ANME-2d及其他ANMEs可能根据环境改变而选择不同的电子受体,其相对应的电子转移机制也不同。通过对不同电子受体下的ANME-2d及其他ANMEs在淡水系统中的作用机制进行讨论分析,可为淡水系统甲烷厌氧氧化机制和碳循环过程提供理论依据,并为在工程中应用ANMEs实现同步污染物处理和甲烷削减提供新的思路。
关键词: 淡水系统/
ANMEs古菌/
甲烷厌氧氧化

Abstract:Archaeal anaerobic methanotrophs (ANMEs) are key microorganisms in the anaerobic oxidation of methane (AOM), which is of great significance in methane reduction of natural environment. The current researches mainly focused on the ocean systems, while there is little known on the ANMEs are in the freshwater systems. The studies on mechanisms and applications of AOM in the freshwater systems are also rare. On the basis of previous literatures and studies review, the mechanisms of ANME-mediated AOM in the freshwater systems were introduced, the microbial characteristics and geographic distribution were analyzed, and the progress of studies on electron transfer when ANME-2d using different electron acceptors (NO3-, Fe3+, Cr6+, etc.) was systematically reviewed. The ANME-2d, as well as other ANMEs, could select different electron acceptors depending on environment variations which were assigned to different electron-transferring mechanisms. The discussion on the mechanisms of ANME-2d and other ANMEs with different electron acceptors in the freshwater systems could provide the theorical fundament about AOM and carbon cycle in the freshwater, as well as the new insight on using ANMEs to simultaneously reduce CH4 and pollutants in the engineering application.
Key words:freshwater system/
ANMEs archaea/
anaerobic oxidation of methane.

加载中
[1] CAI Y F, ZHENG Y, BODELIER P L, et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 1-10.
[2] SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602-606.
[3] RHEE T S, KETTLE A J, ANDREAE M O. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic[J]. Journal of Geophysical Research Atmospheres, 2009, 114: 1-20.
[4] TAMAI N, TAKENAKA C, ISHIZUKA S. Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil[J]. Soil Biology & Biochemistry, 2007, 39(7): 1730-1736.
[5] BAROR I, ELVERT M, ECKERT W, et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals[J]. Environmental Science & Technology, 2017, 51(21): 12293-12301.
[6] KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 2008, 63: 311-334.
[7] SEGARRA K E, SCHUBOTZ F, SAMARKIN V, et al. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6: 1-8.
[8] RAGHOEBARSING A A, OL A, PASSCHOONEN K T V D, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921.
[9] ISLAS-LIMA S, THALASSO F, GóMEZ-HERNANDEZ J. Evidence of anoxic methane oxidation coupled to denitrification[J]. Water Research, 2004, 38(1): 13-16.
[10] HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2010, 1(5): 377-384.
[11] SHEN L D, WU H S, LIU X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162-172.
[12] PADILLA C C, RISTOW L A, SARODE N. NC10 bacteria in marine oxygen minimum zones[J]. ISME Journal, 2016, 10(8): 2067-2071.
[13] WANG Y, HUANG P, YE F, et al. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir[J]. Applied Microbiology & Biotechnology, 2016, 100(4): 1977-1986.
[14] CHEN J, ZHOU Z, GU J D. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology & Biotechnology, 2015, 99(3): 1463-1473.
[15] 柴风光, 卢培利, 李微薇, 等. 利用硝酸盐和亚硝酸盐同步富集厌氧甲烷氧化微生物的比较实验[J]. 微生物学通报, 2018, 45(4): 762-770.
[16] HU B L, HE Z F, GENG S, et al. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: Impact of reactor configuration[J]. Applied Microbiology & Biotechnology, 2014, 98(18): 7983-7991.
[17] HATAMOTO M, KIMURA M, SATO T, et al. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures[J]. Plos One, 2014, 9(12): 1-12.
[18] ZHU B, VAN D G, FRITZ C, et al. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied & Environmental Microbiology, 2012, 78(24): 8657-8665.
[19] LUESKEN F A, ALEN T A V, BIEZEN E V D, et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge[J]. Applied & Environmental Microbiology, 2011, 92(4): 845-854.
[20] HE Z F, CAI C, SHEN L D, et al. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria[J]. Applied Microbiology & Biotechnology, 2015, 99(2): 939-946.
[21] HE Z F, GENG S, PAN Y W, et al. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference[J]. Water Research, 2015, 85: 235-243.
[22] YAN P G, LI M C, WEI G S, et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River estuary, China[J]. Plos One, 2015, 10(9): 1-14.
[23] HU S, ZENG R J, KELLER J, et al. Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process[J]. Environmental Microbiology Reports, 2011, 3(3): 315-319.
[24] MING L W, ETTWIG K F, JETTEN M S M, et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus Methylomirabilis oxyfera[J]. Biochemical Society Transactions, 2011, 39(1): 243-248.
[25] HE Z F, CAI C Y, WANG J Q, et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony[J]. Scientific Reports, 2016, 6: 1-10.
[26] HE Z F, WANG J Q, HU J J, et al. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria[J]. Applied Microbiology & Biotechnology, 2016, 100(11): 5099-5108.
[27] HE Z F, CAI C, GENG S, et al. Mdodeling a nitrite-dependent anaerobic methane oxidation process: Parameters identification and model evaluation[J]. Bioresource Technology, 2013, 147(8): 315-320.
[28] ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548.
[29] HU S, ZENG R J, BUROW L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms[J]. Environmental Microbiology Reports, 2010, 1(5): 377-384.
[30] ETTWIG K F, ALEN T V, PASSCHOONEN K T V D, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied Microbiology & Biotechnology, 2009, 75(11): 3656-3662.
[31] TIMMERS P H A, WIDJAJA-GREEFKES H C A, PLUGGE C M, et al. Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation[J]. Applied Microbiology & Biotechnology, 2017, 14: 1-13.
[32] HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6730): 802-805.
[33] HAROON M F, SHIHU H, YING S, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464): 567-570.
[34] TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic archaea[J]. Archaea, 2017, 17: 1-22.
[35] 周京勇, 刘冬秀, 何池全, 等. 土壤中甲烷厌氧氧化菌多样性的分子检测[J]. 生态学报, 2015, 35(11): 3491-3503.
[36] SCHELLER S, YU H, CHADWICK G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274): 703-707.
[37] 陈颖. 厌氧甲烷氧化微生物代谢分子机制及其潜在参与矿物形成机理的研究[D]. 上海: 上海交通大学, 2014.
[38] FU L, DING Z W, DING J, et al. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes[J]. Applied Microbiology & Biotechnology, 2015, 99(19): 7925-7936.
[39] ETTWIG K F, ZHU B, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences ,2016, 113(45): 12792-12796.
[40] DING L J, SU J Q, XU H J, et al. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing[J]. ISME Journal, 2015, 9(3): 721-734.
[41] VAKSMAA A, LüKE C, ALEN T V, et al. Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil[J]. FEMS Microbiology Ecology, 2016, 92(12): 1-11.
[42] SEIFERT R, NAUHAUS K, BLUMENBERG M, et al. Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro[J]. Organic Geochemistry, 2006, 37(10): 1411-1419.
[43] DING Z W, DING J, FU L, et al. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria[J]. Applied Microbiology & Biotechnology, 2014, 98(24): 10211-10221.
[44] HE Z F, GENG S, SHEN L D, et al. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J]. Water Research, 2015, 68(47): 554-562.
[45] HAROON M F, HU S, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464): 567-570.
[46] WEBER H S, HABICHT K S, THAMDRUP B. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment[J]. Frontiers in Microbiology, 2017, 8: 1-13.
[47] VAKSMAA A, JETTEN M S M, ETTWIG K F, et al. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph Candidatus Methanoperedens nitroreducens[J]. Applied Microbiology & Biotechnology, 2017, 101(4): 1631-1641.
[48] DING J, LU Y Z, FU L, et al. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell[J]. Water Research, 2016, 110: 112-119.
[49] VAKSMAA A, GUERRERO-CRUZ S, ALEN T A V, et al. Enrichment of anaerobic nitrate-dependent methanotrophic Candidatus Methanoperedens nitroreducens archaea from an Italian paddy field soil[J]. Applied Microbiology & Biotechnology, 2017, 101(18): 7075-7084.
[50] AI M, MOCHIMARU H, KAZAMA H, et al. Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs)[J]. FEMS Microbiology Letters, 2010, 297(1): 31-37.
[51] STROUS M, JETTEN M S M. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58(1): 99-117.
[52] TIMMERS P H, SUAREZZULUAGA D A, ROSSEM M V, et al. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source[J]. ISME Journal, 2016, 10(6): 1400-1412.
[53] MILUCKA J, FERDELMAN T G, POLERECKY L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425): 541-546.
[54] WICKLAND K, HAMDAN L, ROOZE J, et al. Iron‐dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact[J]. Limnology & Oceanography, 2016, 61: S267-S282.
[55] EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277-283.
[56] HANSEL C M, LENTINI C J, TANG Y, et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments[J]. ISME Journal, 2015, 9(11): 2400-2412.
[57] RIEDINGER N, FORMOLO M J, LYONS T W, et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments[J]. Geobiology, 2014, 12(2): 172-181.
[58] TORRES N T, OCH L M, HAUSER P C, et al. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia[J]. Environmental Science Processes & Impacts, 2014, 16(4): 879-889.
[59] K á NORDI, BO T, SCHUBERT C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment[J]. Limnology & Oceanography, 2013, 58(2): 546-554.
[60] AMOS R T, BEKINS B A, COZZARELLI I M, et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer[J]. Geobiology, 2012, 10(6): 506-517.
[61] HOLMKVIST L, FERDELMAN T G, BO B J. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(12): 3581-3599.
[62] SIVAN O, ADLER M, PEARSON A, et al. Geochemical evidence for iron‐mediated anaerobic oxidation of methane[J]. Limnology & Oceanography, 2011, 56(4): 1536-1544.
[63] BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187.
[64] HE Z F, ZHANG Q Y, FENG Y D, et al. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane[J]. Science of the Total Environment, 2017, 610-611: 759-768.
[65] Arslan A, Speth D R, De G R M, et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea[J]. Frontiers in Microbiology, 2015, 6: 1-14.
[66] FU L, LI S W, DING Z W, et al. Iron reduction in the DAMO/Shewanellaoneidensis MR-1 coculture system and the fate of Fe(II)[J]. Water Research, 2016, 88: 808-815.
[67] ETTWIG K F, SHIMA S, VAN P S, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of archaea[J]. Environmental Microbiology, 2010, 10(11): 3164-3173.
[68] LU Y Z, FU L, DING J, et al. Cr (VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor[J]. Water Research, 2016, 102: 445-452.
[69] 蔡朝阳. 潮间带古菌介导的甲烷厌氧氧化过程研究[D]. 杭州: 浙江大学, 2017.
[70] SCHUBERT C J, FRANCISCO V, TINA L S B, et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno) [J]. FEMS Microbiology Ecology, 2015, 76(1): 26-38.
[71] ONI O E, FRIEDRICH M W. Metal oxide reduction linked to anaerobic methane oxidation[J]. Trends in Microbiology, 2017, 25(2): 88-90.
[72] WANG F, ZHANG Y, CHEN Y, et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways[J]. ISME Journal, 2014, 8(5): 1069-1078.
[73] SHI L, SQUIER T C, ZACHARA J M, et al. Respiration of metal (hydr)oxides by shewanella and geobacter: A key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2010, 65(1): 12-20.
[74] SHI L, DONG H L, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662.
[75] WANKEL S D, ADAMS M, JOHNSTON D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: Influence on carbon flux and decoupling from sulfate reduction[J]. Environmental Microbiology, 2012, 14(10): 2726-2740.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:2328
HTML全文浏览数:2222
PDF下载数:182
施引文献:0
出版历程

刊出日期:2019-06-03




-->








淡水系统中甲烷厌氧氧化古菌的研究进展

翟俊1,,
李媛媛1,
何孟狄2,
马宏璞1,
戴元贵1
1.重庆大学,三峡库区生态环境教育部重点实验室,重庆 400045
2.中国市政工程西南设计研究总院有限公司,成都 610081
基金项目: 国家自然科学基金资助项目51478062, 51878093国家自然科学基金资助项目(51478062, 51878093)
关键词: 淡水系统/
ANMEs古菌/
甲烷厌氧氧化
摘要:甲烷厌氧氧化古菌(ANMEs)是甲烷厌氧氧化过程中的重要微生物种群,对自然生境甲烷削减的意义重大,目前研究多集中在海洋系统,而关于ANMEs古菌在淡水系统的研究较少,其相关作用机理和工程应用的研究也尚处于初步阶段。在综合文献及前期研究基础上,介绍了ANMEs为主线的淡水系统甲烷厌氧氧化机制,分析了ANMEs的微生物学特性及地理分布,系统梳理了ANME-2d古菌针对不同电子受体(NO3-、Fe3+、Cr6+等)的电子转移体系研究进展;指出了ANME-2d及其他ANMEs可能根据环境改变而选择不同的电子受体,其相对应的电子转移机制也不同。通过对不同电子受体下的ANME-2d及其他ANMEs在淡水系统中的作用机制进行讨论分析,可为淡水系统甲烷厌氧氧化机制和碳循环过程提供理论依据,并为在工程中应用ANMEs实现同步污染物处理和甲烷削减提供新的思路。

English Abstract






--> --> --> 参考文献 (75)
相关话题/系统 电子 微生物 工程 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 热电厂双膜法中水深度处理回用系统膜污染机制分析
    郑利兵1,2,3,,张春1,夏森4,梁国良4,郁达伟1,2,王钢5,岳增刚5,魏源送1,2,3,1.中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京1000852.中国科学院生态环境研究中心,水污染控制实验室,北京1000853.中国科学院大学,北京1000494.华能济宁电厂 ...
    本站小编 Free考研考试 2021-12-31
  • 生物基质对SWIS脱氮效果及微生物的影响
    严群1,,丁越1,2,温慧凯1,2,刘馥雯1,2,胡晋博1,2,蔡若宇1,21.江西理工大学建筑与测绘工程学院,赣州3410002.江西理工大学赣江流域水质安全保障工程技术研究中心,赣州341000Effectofbiologicalmatrixondenitrificationandmicroor ...
    本站小编 Free考研考试 2021-12-31
  • 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn
    张瑞昌1,,邱会玲1,王婷1,冯帆1,李梦婷11.河南科技大学化工与制药学院,洛阳471023基金项目:国家自然科学基金资助项目41601520河南科技大学大学生研究训练计划(SRTP)项目2018140国家自然科学基金资助项目(41601520)河南科技大学大学生研究训练计划(SRTP)项目(20 ...
    本站小编 Free考研考试 2021-12-31
  • 污水集输管道系统中有害气体释放与解决对策
    卢金锁1,,周亚鹏2,丁艳萍3,郑才林4,廖邦友4,宋光顺5,陈军51.西安建筑科技大学,陕西省环境工程重点实验室,西安7100552.西安建筑科技大学环境与市政工程学院,西安7100553.西安建筑科技大学管理学院,西安7100554.安康市市政设施管理处,安康7250005.西安市政设计研究院有 ...
    本站小编 Free考研考试 2021-12-31
  • 热电厂双膜法中水深度处理系统运行效果与问题分析
    王钢1,,岳增刚1,郑利兵2,3,,张春2,郁达伟2,3,夏森4,梁国良4,魏源送2,3,51.华能嘉祥发电有限公司,济宁2724002.中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京1000853.中国科学院生态环境研究中心,水污染控制实验室,北京1000854.华能济宁电 ...
    本站小编 Free考研考试 2021-12-31
  • 循环水养殖系统六级生物滤池运行效果分析
    柳婷婷1,,李丽1,2,,蒋雯雯1,蔡玉勇1,董双林1,21.中国海洋大学海水养殖教育部重点实验室,青岛2660032.青岛海洋科学与技术国家实验室,青岛266237基金项目:国家重点研发计划2017YFE0122100中国海洋大学海水养殖教育部重点实验室开放基金资助项目KLM2017002国家重点 ...
    本站小编 Free考研考试 2021-12-31
  • 紫外线-茶多酚/次氯酸钠联合消毒管网微生物特性分析
    刘炫圻1,2,,宋春刚3,冯萃敏1,2,,田萌4,纪海霞4,张欣蕊4,丁梓沁1,21.北京建筑大学,北京未来城市设计高精尖创新中心,北京1000442.北京建筑大学,水环境国家级实验教学示范中心,北京1000443.北京城建房地产开发有限公司,北京1000814.北京市市政工程设计研究总院有限公司, ...
    本站小编 Free考研考试 2021-12-31
  • 芦苇生物炭复合载体固定化微生物去除水中氨氮
    郑华楠1,,宋晴2,3,朱义2,3,孟庆瑞4,崔心红1,2,3,1.华东理工大学资源与环境工程学院,上海2002372.上海市园林科学规划研究院,上海2002323.上海城市困难立地绿化工程技术研究中心,上海2002324.上海电器科学研究所集团有限公司,上海200232基金项目:上海市环保局科研项 ...
    本站小编 Free考研考试 2021-12-31
  • 电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性
    李亚林1,,刘蕾1,张景玉1,任萌萌1,李可心1,杨瑞丽11.河南工程学院资源与环境学院,郑州451191基金项目:河南省科技攻关项目162102310402郑州市科技攻关项目20150237河南工程学院博士基金项目D2015008河南省科技攻关项目(162102310402)郑州市科技攻关项目(2 ...
    本站小编 Free考研考试 2021-12-31
  • 福创溪-大排沟黑臭水体一河一策治理工程
    迟娟1,2,,姜勇1,2,袁训珂1,赵伦1,陈伟燕1,田聃11.博天环境集团股份有限公司,北京1000822.博天环境科技天津有限公司,天津300140基金项目:天津市科委计划项目17ZXSTSF00040天津市科委计划项目(17ZXSTSF00040)Remediationprojectofbla ...
    本站小编 Free考研考试 2021-12-31