全文HTML
--> --> --> 近年来,纳米材料在化妆品、电子、医疗保健、食品和环境修复等领域得到了广泛的应用[1-2],氧化锌纳米颗粒(ZnO-NPs)是备受关注的金属纳米氧化物之一[3-4],其中污水排放是纳米材料释放的主要途径[5]。另一方面,抗生素作为一种新型污染物在医院和家庭等环境中大量的使用,不可避免的被释放到水体环境中,尤其是在污水处理厂的污泥中进行富集[6-7]。而四环素(TC)是用于畜牧业生产和人类治疗中使用量最大的一类抗生素[8-9],但其50%~80%未经代谢和吸收就通过粪便和尿液排出[10],大量残留的TC对人体健康和微生物带来了严重威胁[11]。胞外聚合物(EPS)是指直接覆盖在微生物表面或填充在微生物聚集体之间的高分子聚合物[12],EPS能形成保护层和营养吸收层抵抗有害的外界环境,还能在有机物较低时为微生物提供重要的碳源和能源[13-14]。其中,蛋白质和多糖约占EPS总量的70%~80%,是其主要成分[13, 15-16]。已有研究[17]表明,有毒物质在废水中的存在会导致微生物分泌EPS的成分和含量的不同,以此来抵御有毒物质的侵害。在活性污泥污水处理过程中,ZnO-NPs和TC作为痕量污染物可能影响EPS的成分和含量,从而进一步影响活性污泥性能。李维等[18]发现投加的ZnO-NPs其大部分会团聚在活性污泥表面上,致使EPS的产量和性质发生改变,低浓度ZnO-NPs对活性污泥EPS产量影响不大,高浓度(50 mg·L-1) ZnO-NPs使EPS中的蛋白质和多糖含量总体呈先上升后下降的趋势,并且会导致细胞发生凹陷。李娟英等[19]发现受抗生素类污染物影响的活性污泥EPS中蛋白质和多糖含量增加,且蛋白质的增加会导致污泥疏水性增强,导致絮凝性能恶化和SVI值下降。宋超[20]发现EPS中的蛋白质是与TC作用的主要成分,且蛋白质含量约是多糖的2倍,并用光谱学和能谱学发现TC中的羟基官能团发生变化最为明显,其可能会影响四环素的活性。
目前,在ZnO-NPs或TC对活性污泥EPS的研究中,主要集中于关于ZnO-NPs或TC对污泥EPS的单一影响的研究,关于二者共存的系统对EPS的影响研究鲜有报道。因此,本研究考察了二者通过浓度梯度递增的方式对EPS中蛋白质和多糖含量的影响,以此为ZnO-NPs和TC共存下对活性污泥EPS的影响机制提供理论依据。
微孔滤膜(0.22 μm)购置于上海新亚净化设备有限公司;001×7(732型)强酸性阳离子交换树脂购置于河北廊坊南大树脂公司。
电子分析天平(FA124,上海舜宇恒平科学仪器有限公司);超声波分析器(M1800-C,美国BRANSON公司);电热鼓风干燥箱(DGG-9620A,上海齐欣科学仪器有限公司);电热恒温水浴锅(DK-98-11,天津市泰斯特仪器有限公司);紫外可见分光光度计(α-1900s,上海谱元仪器有限公司);便携式溶解氧测定仪与便携式PH计(JPB-607AB和PHBJ-260,上海仪电科学仪器股份有限公司);六联电动搅拌器(JJ-4,常州国华电器有限公司);高速台式离心机(GT10-1,北京时代北利离心机有限公司);红外光谱仪(Nicolet 6700,美国Thermo Scientific公司);荧光分光光度计(Floromax-4,美国Horiba公司)。
2) 实验装置与运行条件。实验采用4组规格完全相同的有机玻璃材质SBR平行反应器(见图 1)。单格反应器尺寸为30 cm×30 cm×41 cm,有效容积为37 L,设定排水体积21 L。采用间歇式进、出水周期运行,单个运行周期为12 h,具体为瞬时进水,慢速搅拌4 h,曝气6 h,沉淀1 h,排水闲置1 h。搅拌阶段通过磁力搅拌器和调速电机控制;采用微孔曝气头均匀布气,并利用气体流量计调节曝气量;用温度棒将温度控制在23~25 ℃。因太阳光中吸收波长主要集中在紫外区 < 368 nm[21],本研究在每个反应器上面均固定4个365 nm波长的紫外灯用来模拟光照条件,每天10:00—14:00光照4 h。
3) 接种污泥与进水水质。本实验的接种污泥取自贵阳市小河污水厂SBR工艺二沉池,污泥颜色偏黑,有轻微臭味,SVI为45左右,MLSS值大致在3 100 mg·L-1。为去除污泥挟带的有机质,先在采样桶里静置沉淀2 h,将上清液吸出。然后,每个反应器中加入9 L接种污泥作为菌种,接入模拟生活污水并开始闷曝24 h。最后开始连续进水至反应器有效容积。实验过程中,pH控制在7.5~8.5,温度控制在23~25 ℃。培养驯化为期20 d左右,至4个反应器出水指标SV值、出水COD、MLSS稳定一段时间,视驯化完成。
实验中采用人工配水,以葡萄糖为碳源模拟生活污水,NH4Cl提供氮源,KH2PO4提供磷源,实验按照COD:N:P=100:5:1营养质量配比;NaHCO3调节水质的pH;微量元素包括CaCl2 (0.03 mg·L-1)、MgSO4 (0.07 mg·L-1)。实验污水的进水水质指标为COD值300~500 mg·L-1、NH4+-N浓度50~100 mg·L-1。
4) 储备液配制。ZnO-NPs储备液配制:称取1 g ZnO-NPs用去离子水定容至1 L容量瓶中,作为1 g·L-1储备液;超声(23 ℃,140 W,40 Hz)振荡2 h,防止其团聚;反应器ZnO-NPs进水浓度0.1、5、15、25 mg·L-1均由此储备液稀释得到,每次投加前再进行超声30 min,防止团聚。
TC储备液配制:称取1 g TC用去离子水定容至1 L棕色容量瓶中,然后放入冰箱4 ℃冷冻室储备待用;反应器TC进水浓度5、15、25、50 mg·L-1均由此储备液稀释得到。
5) 溶液投加方式。采用溶液浓度梯度增加的方式进行投加,每15 d为1个浓度反应周期,具体投加方式如表 1所示。
6) EPS提取和分析方法。EPS的提取采用树脂法[22]。即在SBR搅拌阶段取污泥混合液50 mL,将其在6 000 r·min-1下离心5 min后弃去上清液,并加入超纯水稀释至50 mL;1 g VSS污泥加入60 g阳离子交换树脂(提前用甲醇浸泡过夜,用18.2 MΩ·cm的超纯水清洗干净),在300 r·min-1下搅拌提取l h;最后,将其在6 000 r·min-1下离心10 min,用在超纯水中浸泡过的0.22 μm微孔膜对上清液进行过滤,滤液即为EPS。
蛋白质含量采用Folin酚法[23]测定;多糖含量采用蒽酮比色法[23]测定。
7) FT-IR。为分析EPS中化学官能团变化,将提取液用冷冻干燥机经过冷冻干燥后与光谱纯KBr按照1:100研磨混合,压片成型后在红外光谱仪进行FT-IR表征,在400~4 000 cm-1波数范围内扫描,检测器分辨率为4 cm-1。
8) 3D-EEM。为测定EPS中特征类物质含量变化,采用Floromax-4荧光分光光度计进行3D-EEM定性分析。激发波长(Ex)以10 nm为间隔从200 nm到400 nm,发射波长(Em)以10 nm为间隔从290 nm到500 nm,激发光和发射光的狭缝均为10 nm,扫描速度为1 200 nm·min-1。采用Origin 2017软件绘制三维等高线图,对各个位置出现的荧光峰进行定性分析。
2.1. 各系统递增浓度15 d周期结束时对EPS影响
图 2(a)和图 2(b)反映了各系统递增浓度在反应了第15天后蛋白质及多糖的含量。低浓度的ZnO-NPs (0.1、5 mg·L-1)、TC (5、15 mg·L-1)和复合投加系统(0.1 mg·L-1 ZnO-NPs+5 mg·L-1 TC、5 mg·L-1 ZnO-NPs+15 mg·L-1 TC)分别在15 d和30 d结束时的蛋白质和多糖含量与空白组相差不大。随着浓度的递增及周期的延长,由图 2中15 mg·L-1和25 mg·L-1 ZnO-NPs分别在45 d和60 d结束时的蛋白质和多糖浓度可知,整个周期内(1~60 d),ZnO-NPs系统内的蛋白质含量呈现下降趋势,多糖含量呈现先上升后下降趋势,反应结束时(第60天),25 mg·L-1 ZnO-NPs系统内蛋白质含量下降到95.32 mg·g-1,多糖含量下降到18.33 mg·g-1,相比于空白组分别下降了33.58%和64.75%。
整个周期内,TC系统和复合投加系统内的蛋白质含量均呈现上升趋势,多糖含量呈现出先上升后下降趋势,且复合投加系统表现的更明显。在反应结束时(第60天),50 mg·L-1 TC和25 mg·L-1 ZnO-NPs+50 mg·L-1 TC复合投加系统内EPS中的蛋白质含量分别达到最大值226.53 mg·g-1和243.35 mg·g-1,多糖含量下降到29.33 mg·g-1和31 mg·g-1,相比于空白组,2个系统内蛋白质含量分别升高了57.86%和68.58%,多糖含量分别下降了43.60%和40.38%,因此,复合投加系统对EPS中蛋白质和多糖含量的产生影响更大。
2.2. 不同浓度ZnO-NPs对EPS影响
图 3反映了整个反应周期内不同浓度梯度ZnO-NPs对EPS中蛋白质和多糖含量的影响。由图 3可知EPS主要成分是蛋白质[24]。从整体来看,0.1 mg·L-1 ZnO-NPs投加量下,系统中的蛋白质和多糖含量未发生明显变化。5 mg·L-1 ZnO-NPs系统中的蛋白质含量没有明显变化,但是,多糖含量表现出逐步上升趋势。15 mg·L-1和25 mg·L-1系统周期内蛋白质含量先上升后下降。多糖的变化趋势分别为:在15 mg·L-1 ZnO-NPs投加下逐步上升,而在25 mg·L-1 ZnO-NPs内多糖呈现先上升后下降趋势,在反应结束时(第60天),相比于0.1、5、15 mg·L-1 ZnO-NPs系统中的蛋白质和多糖含量,25 mg·L-1 ZnO-NPs中的二者浓度均达到最低。MU等[25]在研究ZnO-NPs对厌氧污泥影响时发现,随着ZnO-NPs浓度增加至200 mg·g-1时,蛋白质含量显著降低而多糖含量无明显变化。但任志群[22]发现,经过30 d长期暴露且随纳米ZnO系统分别为1、5、25 mg·L-1浓度的增大,蛋白质和多糖含量均呈现明显下降趋势。随着反应时间的增加,ZnO-NPs在活性污泥中逐渐积累,微生物表现出一定的适应性,开始产生更多的EPS来抵御不良环境,对其的活性抑制作用较小[18]。在反应进行到第54天,25 mg·L-1 ZnO-NPs系统内蛋白质含量达到最大值179.86 mg·g-1,反应结束时,蛋白质含量下降到95.32 mg·g-1,相比于最大值降低了47%,多糖含量减少到18.33 mg·g-1。这表明,随着ZnO-NPs含量积累过高,抑制了微生物对EPS中蛋白质和多糖的分泌,对微生物的抑制作用更加明显,导致微生物分泌的蛋白质和多糖含量急剧下降[22, 24]。
2.3. 不同浓度TC对EPS影响
图 4反映了整个反应周期内不同浓度梯度TC对EPS中蛋白质和多糖含量的影响。从图 4可看出,蛋白质是EPS中的主要成分。蛋白质平均含量为165.67 mg·g-1,多糖平均含量约为41.18 mg·g-1,其平均含量约为蛋白质的0.25倍,这与其他研究得出的结论[19, 26]一致。5 mg·L-1和15 mg·L-1 TC系统中EPS的蛋白质和多糖含量变化相差不大。随着反应时间的延长和系统内TC含量的逐步增加,25 mg·L-1、50 mg·L-1 TC系统中的蛋白质含量明显增多,25 mg·L-1 TC系统中蛋白质和多糖含量呈现逐步上升趋势。有研究[27-28]表明,在四环素的胁迫下,微生物主要通过产生大量蛋白质来抵御四环素对细胞的破坏;也有研究[19, 29-30]发现,在化学物质如TC等有害物质的刺激下EPS中蛋白质和多糖含量增加,细胞通过自溶、新陈代谢或环境吸附在活性污泥表面形成保护层,来保持结构完整从而使微生物免受毒性物质冲击。随着反应的进行和TC含量的积累,50 mg·L-1 TC系统中蛋白质在反应结束时略有下降,相比于第54天的最大值267.14 mg·g-1,反应结束时(第60天)蛋白质含量下降了15%。多糖呈现出下降趋势,说明活性污泥可能对四环素的破坏产生一定抗药性,也可能微生物新陈代谢受到抑制导致EPS产量降低。2.4. 不同浓度ZnO-NPs和TC对EPS的复合影响
图 5反映了整个反应周期内不同浓度梯度ZnO-NPs和TC复合投加系统对EPS中蛋白质和多糖含量的影响。EPS中的蛋白质平均含量约是多糖平均含量的3.76倍。0.1 mg·L-1 ZnO-NPs+5 mg·L-1 TC和5 mg·L-1 ZnO-NPs+15 mg·L-1 TC复合投加系统EPS中的蛋白质和多糖含量变化不大。但是,15 mg·L-1 ZnO-NPs+25 mg·L-1 TC和25 mg·L-1 ZnO-NPs+50 mg·L-1 TC复合投加系统EPS中蛋白质含量均明显增加。第45天时15 mg·L-1 ZnO-NPs+25 mg·L-1 TC多糖浓度为99.33 mg·g-1,此浓度下的ZnO-NPs和TC单独作用时多糖含量分别为56.67 mg·g-1和86.00 mg·g-1。在反应进行到第54天,25 mg·L-1 ZnO-NPs+50 mg·L-1 TC系统中的蛋白质含量达到最大值307.59 mg·g-1。反应结束时(第60天)下降至243.35 mg·g-1,相比于最大值减少了20.88%,这与50 mg·L-1 TC单独作用时蛋白质浓度的变化趋势类似。而其多糖含量呈现出先上升后下降趋势,反应结束时多糖浓度为31.00 mg·g-1,而ZnO-NPs和TC单独作用时多糖浓度分别为18.33、29.33 mg·g-1。可知各反应系统中EPS的蛋白质和多糖含量与不同浓度TC单独作用时对EPS的变化趋势相近,这可能是复合投加系统受TC的影响较大。
2) 低浓度TC系统对活性污泥EPS没有产生显著影响,高浓度TC系统影响EPS产量。
3) 复合投加各系统总体变化趋势与四环素各系统单独作用时相近,判断复合投加系统可能受四环素影响较多,但高浓度的复合投加蛋白质和多糖含量产生的变化更加明显。
4) 经过表征,FT-IR反映出ZnO-NPs、TC和复合投加系统对EPS中蛋白质和多糖中的部分官能团有影响;3D-EEM表明各系统主要对EPS中的蛋白质基团产生影响。
参考文献