2.贵州省环境监测中心站,贵阳 550081
1.College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
2.Environmental Monitoring Center of Guizhou Province, Guiyang 550081, China
为研究氧化锌纳米颗粒(ZnO-NPs)和四环素(TC)对SBR系统内活性污泥胞外聚合物(EPS)特性的响应变化,在模拟室外光照条件下,考察了递增浓度ZnO-NPs和TC单独或复合投加方式下对EPS中蛋白质和多糖的影响。结果表明:ZnO-NPs、TC和复合投加系统中EPS的蛋白质含量均明显高于多糖,在各系统中,低浓度的投加量对蛋白质和多糖的含量改变无明显影响;随着浓度的递增和反应周期的延长,相比于空白组,ZnO-NPs系统中的蛋白质和多糖含量分别下降了33.58%和64.75%;TC和复合投加系统中蛋白质含量分别升高了57.86%、68.58%,多糖含量分别下降了43.60%和40.38%,且2个系统蛋白质和多糖含量变化趋势相似,因此,判断复合投加系统可能受TC影响较大。FT-IR分析显示,ZnO-NPs、TC和复合投加系统主要对EPS中蛋白质和多糖中的—OH、—NH
、C=O、C—OH及C—O产生影响。3D-EEM分析表明,EPS中蛋白质基团受到主要影响。该研究可为纳米颗粒和抗生素共存情况下对污泥EPS的影响提供依据。
In this study, the effects of zinc oxide nanoparticles (ZnO-NPs) and tetracycline (TC) on the property variation of extracellular polymer substance (EPS) in activated sludge of SBR system were determined. Under the simulated outdoor illumination conditions, the effects of gradually increasing concentrations of ZnO-NPs or TC alone and their combined system on protein and polysaccharide in EPS were investigated. Results showed that the protein content of EPS in ZnO-NPs, TC or their combined system were significantly higher than the polysaccharide content, while low doses of these additives had no significant effect on the variations of protein and polysaccharide contents. With the increase of additives contents and the extension of the reaction cycle, compared with the control system, the protein and polysaccharide contents in the ZnO-NPs system decreased by 33.58% and 64.75%, respectively. In the TC or combined system, the protein content increased by 57.86% and 68.58%, while the polysaccharide content decreased by 43.60% and 40.38%, respectively. The similar change trends of protein and polysaccharide content in TC and combined systems could imply that the combined system may be more susceptible to TC. FT-IR analysis showed that ZnO-NPs, TC and combined system mainly affected the —OH、—NH
、C=O、C—OH and C—O in the proteins and polysaccharides of EPS, and 3D-EEM indicated that the three systems mainly affected the protein function groups of EPS. This study can provide research basis for the effect of nanoparticles and antibiotics coexistence on sludge EPS.
.
Setup of a single reactor in an operation unit of SBR system
各系统递增浓度15 d周期结束时对EPS的影响
Effect of increasing concentration of each system on EPS at the end of 15 d cycle
Effects of ZnO-NPs on EPS of activated sludge
Effects of TC on EPS of activated sludge
ZnO-NPs和TC对活性污泥EPS的影响
Effects of ZnO-NPs and TC on EPS of activated sludge
FT-IR spectra of EPS extracted from activated sludge
3D-EEM fluorescence spectra of EPS extracted from activated sludge
[1] | DUNPHY GUZMAN K A, FINNEGAN M P, BANFIELD J F. Influence of surface potential on aggregation and transport of titania nanoparticles[J]. Environmental Science & Technology, 2006, 40(24): 7688-7693. |
[2] | CUI Y, WEI Q, PARK H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. doi: 10.1126/science.1062711 |
[3] | XIA T, KOVOCHICH M, LIONG M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties[J]. ACS Nano, 2008, 2(10): 2121-2134. doi: 10.1021/nn800511k |
[4] | PICCINNO F, GOTTSCHALK F, SEEGER S, et al. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J]. Journal of Nanoparticle Research, 2012, 14(9): 1109-1119. doi: 10.1007/s11051-012-1109-9 |
[5] | BOXALL A B A, TIEDE K, CHAUDHRY Q. Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health[J]. Perspective, 2007, 2(6): 919-927. |
[6] | BROWN K D, KULIS J, THOMSON B, et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the rio grande in new mexico[J]. Science of the Total Environment, 2006, 366(2/3): 772-783. |
[7] | CORRE K S, ORT C, KATELEY D, et al. Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater[J]. Environment International, 2012, 45: 99-111. doi: 10.1016/j.envint.2012.03.008 |
[8] | THIELE-BRUHN S. Pharmaceutical antibiotic compounds in soils: A review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167. doi: 10.1002/jpln.200390023 |
[9] | CHOPRA I, ROBERTS M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232-260. doi: 10.1128/MMBR.65.2.232-260.2001 |
[10] | HALLING-S?RENSEN B, SENGEL?V G, TJ?RNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271. doi: 10.1007/s00244-001-0017-2 |
[11] | SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 |
[12] | HENRIQUES I D S, LOVE N G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins[J]. Water Research, 2007, 41(18): 4177-4185. doi: 10.1016/j.watres.2007.05.001 |
[13] | FR?LUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 |
[14] | YAN L, LIU Y, WEN Y, et al. Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen[J]. Bioresource Technology, 2015, 179: 460-466. doi: 10.1016/j.biortech.2014.12.042 |
[15] | 杨敏, 胡学伟, 宁平, 等.废水生物处理中胞外聚合物(EPS)的研究进展[J].工业水处理, 2011, 31(7): 7-12. doi: 10.3969/j.issn.1005-829X.2011.07.002 |
[16] | DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: Implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38(8): 45-53. |
[17] | 王雪礁, 王森, 李姗姗, 等.二氧化钛纳米颗粒对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J].中国海洋大学学报(自然科学版), 2018, 48(4): 111-119. |
[18] | 李维, 石先阳.氧化锌纳米颗粒对SBR中活性污泥脱氮性能及硝化细菌丰度的影响[J].环境工程学报, 2017, 11(8): 4549-4558. |
[19] | 李娟英, 王肖颖, 解满俊, 等.磺胺和四环素类抗生素对活性污泥性能的影响[J].环境工程学报, 2014, 8(2): 573-580. |
[20] | 宋超.四环素强化生物去除及其在自然水体中迁移转化规律的研究[D].济南: 山东大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10422-1016164569.htm |
[21] | DIAMOND S A, PETERSON G S, TIETGE J E, et al. Assessment of the risk of solar ultraviolet radiation to amphibians. Ⅲ. Prediction of impacts in selected northern midwestern wetlands[J]. Environmental Science & Technology, 2002, 36(13): 2866-2874. |
[22] | 任志群.纳米ZnO对污水生物脱氮除磷系统影响的研究[D].哈尔滨: 哈尔滨工业大学, 2013.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D419044 |
[23] | 陈钧辉.生物化学实验[M]. 3版.北京:科学出版社, 2003. |
[24] | 李素萍.纳米ZnO对SBR系统活性污泥活性及硝化作用的影响[D].哈尔滨: 哈尔滨工业大学, 2014.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D592042 |
[25] | MU H, ZHENG X, CHEN Y, et al. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment[J]. Environmental Science & Technology, 2012, 46(11): 5997-6003. |
[26] | 刘燕, 王越兴, 莫华娟, 等.有机底物对活性污泥胞外聚合物的影响[J].环境化学, 2004, 23(3): 252-257. doi: 10.3321/j.issn:0254-6108.2004.03.003 |
[27] | 张俊珂, 曾萍, 宋永会, 等.受四环素影响的活性污泥胞内外聚合物特征[J].中国环境科学, 2016, 36(3): 751-758. doi: 10.3969/j.issn.1000-6923.2016.03.018 |
[28] | 张微.四环素与胞外聚合物的相互作用及其对污泥耐药性的影响[D].上海: 东华大学, 2014.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2506773 |
[29] | 罗曦, 雷中方, 刘翔.胞外聚合物的提取、组成及其对污泥性质的影响[J].城市环境与城市生态, 2005, 18(5): 38-41. |
[30] | SHENG G, YU H, LI X. Extracellular polymeric substances (EPS) of microbial aggregates in biologicalwastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 |
[31] | RAMESH A, LEE D J, HONG S G. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge[J]. Applied Microbiology and Biotechnology, 2006, 73(1): 219-225. doi: 10.1007/s00253-006-0446-y |
[32] | ZHU L, QI H, KONG Y, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FT-IR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 |
[33] | WANG Z, WU Z, YIN X, et al. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization[J]. Journal of Membrane Science, 2008, 325(1): 238-244. doi: 10.1016/j.memsci.2008.07.035 |
[34] | BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010, 44(15): 4505-4516. doi: 10.1016/j.watres.2010.06.024 |
[35] | ZHU L, DAI X, ZHOU J, et al. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR)[J]. Bioresource, 2013, 140: 126-130. doi: 10.1016/j.biortech.2013.04.017 |
[36] | CROUé J P, BENEDETTI M F, VIOLLEAU D, et al. Characterization and copper binding of humic and nonhumic organic matter isolated from the south platte river: Evidence for the presence of nitrogenous binding site[J]. Environmental Science & Technology, 2003, 37(2): 328-336. |
[37] | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[38] | 刘延利, 潘响亮.三维荧光光谱法研究四环素与活性污泥EPS的相互作用[J].环境科学与技术, 2012, 35(6): 51-54. doi: 10.3969/j.issn.1003-6504.2012.06.012 |