删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标

本站小编 Free考研考试/2021-12-31

曹秀芹1,2,,
袁海光1,
丁浩1,
徐国庆1
1.北京建筑大学环境与能源工程学院,北京 100044
2.城市雨水系统与水环境省部共建教育部重点实验室,北京 100044
基金项目: 北京市属高校基本科研业务费专项资金资助




Exploration of optimal organic loading rates and instability indicators in wet anaerobic digestion of kitchen waste

CAO Xiuqin1,2,,
YUAN Haiguang1,
DING Hao1,
XU Guoqing1
1.School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2.Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing 100044, China

-->

摘要
HTML全文
(0)(0)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探究餐厨垃圾湿式厌氧消化最佳有机负荷及失稳预警指标,在(36±1) ℃单相连续搅拌条件下进行有机负荷(OLR)梯度实验。通过理论及数学分析确定90%含水率餐厨垃圾湿式厌氧消化的最佳OLR和失稳指标。当OLR(以VS计)为2.94 g?(L?d)-1时,挥发性固体去除率、甲烷产率、容积沼气产率分别为78%、0.58 L?g-1VS、2.99 L?(L?d)-1,此时厌氧反应器达到最佳运行状态。一定浓度的游离氨(FAN)会抑制微生物活性,触发挥发性脂肪酸(VFA)的积累,造成容积沼气产率降低,第36天,当OLR增至3.21 g?(L?d)-1时,FAN浓度升至区域峰值207 mg?L-1,但随后骤降35.9%(39 d),分别造成VFA和挥发性脂肪酸浓度与碳酸氢盐碱度的比值(VFA/TA)从第37天的1 897 mg?L-1、0.22升高至第47天的4 755 mg?L-1、0.73,系统进入抑制稳定状态,最终导致容积沼气产率从第47天的2.66 L?(L?d)-1降至第48天的1.88 L?(L?d)-1,系统恶化。协同分析表明,当VFA和VFA/TA分别达到2 500 mg?L-1和0.35并出现持续上升的现象时,能提前7~8 d对90%含水率餐厨垃圾湿式厌氧消化系统的失稳提出预警。
关键词: 餐厨垃圾/
湿式厌氧消化/
最优有机负荷/
失稳预警指标

Abstract:In order to explore the optimal organic loading rates (OLR) and instability warning indicators of anaerobic digestion(AD) of kitchen waste(KW), an OLR gradient experiment of AD of 90% water content KW was carried out under single-phase continuous stirring condition at (36±1) ℃. Through theoretical and mathematical analysis, it'sfound that the anaerobic digester achieved the best operating state,when OLR=2.94 g?(L?d)-1(calculated by VS),the reductionin volatile solid is 78%, the methane production rate is 0.58 L?g-1 VS, and the volume biogas production rate is 2.99 L?(L?d)-1. In essence, in the process of wet anaerobic digestion of KW, a certain concentration of free ammonia nitrogen (FAN) could drastically inhibit methanogenesis, trigger the accumulation of volatile fatty acids (VFA), and result in reduced volume biogas production rate. On day 36, when OLR increased to 3.21 g?(L?d)-1, FAN concentration rised to the extremum 207 mg?L-1, and then plummeted 35.9% on day 39. Subsequently, VFA and the combination indicator volatile fatty acids/total alkalinity (VFA / TA) increased from 1 897 mg?L-1, 0.22 to 4 755 mg?L-1, 0.73, from day 37 to 47, respectively. In the inhibitory state, acid-base neutralization reaction occurred between FAN and VFA, and the co-accumulation of FAN and VFA led to an inhibited steady state, which eventually caused a sharp decrease in volume biogas production rate from 2.66 L?(L?d)-1 to 1.88 L?(L?d)-1 on day 48, the system deterioration. The synergistic analysis manifested that when VFA and VFA/TA accumulated to 2 500 mg?L-1 and 0.35 simultaneously, the early warning of instability of the 90% water content KW wet anaerobic digestion system could be made. Their warning times range from 7 to 8 days, and the warning orders were basically consistent. This study provided technical reference for efficient operation of small and medium sized biogas engineering for wet anaerobic digestion of KW.
Key words:kitchen waste/
wet anaerobic digestion/
optimal OLR/
instability early warning indicators.

加载中
[1] MORRIS E, SALLY B, MATTHEW C, et al.Life-cycle assessment harmonization and soil science ranking results on food-waste management methods[J].Environmental Science & Technology,2017,51(10):5360-5367 10.1021/acs.est.6b06115
[2] 周丽丽,杨帆,罗瑞芬,等. 氧化铁对不同有机负荷下餐厨垃圾厌氧消化产气的影响[J]. 环境工程学报,2017,11(7):4258-4264 10.12030/j.cjee.201605109
[3] MATA-ALCAREZ J.Biomethanization of the organic fraction of municipal solid wastes[J].Water Intelligence Online,2005,4(2):91-105
[4] 张念瑞,李倩,许曼娟,等.进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J].环境工程学报,2018,12(2):638-644 10.12030/j.cjee.201707224
[5] CURRY N, PILLAY P.Biogas prediction and design of a food waste to energy system for the urban environment[J].Renewable Energy,2012,41(2):200-209 10.1016/j.renene.2011.10.019
[6] TAMPIO E, ERVASTI S, PAAVOLA T, et al.Anaerobic digestion of autoclaved and untreated food waste[J].Waste Management,2014,34(2):370-377 10.1016/j.wasman.2013.10.024
[7] NAGAO N, TAJIMA N, KAWAI M, et al.Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste[J].Bioresource Technology,2012,118(8):210-218 10.1016/j.biortech.2012.05.045
[8] KOMILIS D, BARRENA R, GRANDO R L, et al.A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield[J].Reviews in Environmental Science & Bio/Technology,2017,16(2):1-14
[9] CHEN X, YAN W, SHENG K, et al.Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J].Bioresource Technology,2014,154(3):215-221 10.1016/j.biortech.2013.12.054
[10] ANGELIDAKI I, AHRING B K.Thermophilic anaerobic digestion of livestock waste: The effect of ammonia[J].Applied Microbiology & Biotechnology,1993,38(4):560-564
[11] 彭绪亚, 贾传兴, 潘坚,等. 餐厨垃圾单相厌氧消化系统酸化预警指标[J]. 土木建筑与环境工程,2011,33(4):146-150
[12] LI L, HE Q, WEI Y, et al.Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J].Bioresource Technology,2014,171:491-494 10.1016/j.biortech.2014.08.089
[13] 盛迎雪,曹秀芹,张达飞,等.猪粪干式厌氧消化系统稳定性及其耐氨氮机制分析[J].中国沼气,2017,35(3):39-43
[14] KOCH K.Calculating the degree of degradation of the volatile solids in continuously operated bioreactors[J].Biomass & Bioenergy,2015,74:79-83 10.1016/j.biombioe.2015.01.009
[15] HANSEN K H, ANGELIDAKI I, AHRIING B K.Anaerobic digestion of swine manure: Inhibition by ammonia[J].Water Research,1998,32(1):5-12 10.1016/S0043-1354(97)00201-7
[16] XIANG C, WEI Y, SHENG K, et al.Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J].Bioresource Technology,2014,154(3):215-221 10.1016/j.biortech.2013.12.054
[17] LI L,QIN H.Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structureand process stability[J].Bioresource Technology,2015,189:113-120 10.1016/j.biortech.2015.04.015
[18] 夏元亮, 刘程, 吕丹,等. 有机负荷对餐厨单相厌氧消化产甲烷的影响[J]. 环境卫生工程,2014,22(6):66-68
[19] RAJAGOPAL R, MASSE D I, SINGH G.A critical review on inhibition of anaerobic digestion process by excess ammonia[J].Bioresource Technology,2013,143(17):632-641 10.1016/j.biortech.2013.06.030
[20] SHI X, JIA L, ZUO J, et al.Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J].Journal of Environmental Sciences,2017,55(5):49-57 10.1016/j.jes.2016.07.006
[21] MULLER T, WALTER B, WIRTZ A, et al.Ammonium toxicity in bacteria[J].Current Microbiology,2006,52(5):400-406
[22] 唐波, 李蕾, 何琴,等. 总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报,2016,36(1):210-216 10.13671/j.hjkxxb.2015.0427
[23] LV F, HAO L, GUAN D, et al.Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics[J].Water Research,2013,47(7):2297-2306 10.1016/j.watres.2013.01.049
[24] BUJOCZEK G, OLESZKIEWICZ J, SPARLING R, et al.High solid anaerobic digestion of chicken manure[J].Journal of Agricultural Engineering Research,2000,76(1):51-60 10.1006/jaer.2000.0529
[25] AHRING B K, SANDBERG M, ANGELIDAKI I.Volatile fatty-acids as indicators of process imbalance is anaerobic digesters[J].Applied Microbiology & Biotechnology,1995,43(3):559-565 10.1007/BF00218466
[26] ZOETEMEYER R J, MATTHIJSEN A J C M, COHEN A, et al.Product inhibition in the acid forming stage of the anaerobic digestion process[J].Water Research,1982,16(5):633-639 10.1016/0043-1354(82)90084-7
[27] BOE K.Online monitoring and control of the biogas process[J].Archives of Disease in Childhood,2006,59(6):36-44
[28] LIEW L N, SHI J, LI Y.Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment[J].Bioresource Technology,2011,102(19):8828-8834 10.1016/j.biortech.2011.07.005



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:670
HTML全文浏览数:413
PDF下载数:255
施引文献:0
出版历程

刊出日期:2018-07-26




-->








餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标

曹秀芹1,2,,
袁海光1,
丁浩1,
徐国庆1
1.北京建筑大学环境与能源工程学院,北京 100044
2.城市雨水系统与水环境省部共建教育部重点实验室,北京 100044
基金项目: 北京市属高校基本科研业务费专项资金资助
关键词: 餐厨垃圾/
湿式厌氧消化/
最优有机负荷/
失稳预警指标
摘要:为探究餐厨垃圾湿式厌氧消化最佳有机负荷及失稳预警指标,在(36±1) ℃单相连续搅拌条件下进行有机负荷(OLR)梯度实验。通过理论及数学分析确定90%含水率餐厨垃圾湿式厌氧消化的最佳OLR和失稳指标。当OLR(以VS计)为2.94 g?(L?d)-1时,挥发性固体去除率、甲烷产率、容积沼气产率分别为78%、0.58 L?g-1VS、2.99 L?(L?d)-1,此时厌氧反应器达到最佳运行状态。一定浓度的游离氨(FAN)会抑制微生物活性,触发挥发性脂肪酸(VFA)的积累,造成容积沼气产率降低,第36天,当OLR增至3.21 g?(L?d)-1时,FAN浓度升至区域峰值207 mg?L-1,但随后骤降35.9%(39 d),分别造成VFA和挥发性脂肪酸浓度与碳酸氢盐碱度的比值(VFA/TA)从第37天的1 897 mg?L-1、0.22升高至第47天的4 755 mg?L-1、0.73,系统进入抑制稳定状态,最终导致容积沼气产率从第47天的2.66 L?(L?d)-1降至第48天的1.88 L?(L?d)-1,系统恶化。协同分析表明,当VFA和VFA/TA分别达到2 500 mg?L-1和0.35并出现持续上升的现象时,能提前7~8 d对90%含水率餐厨垃圾湿式厌氧消化系统的失稳提出预警。

English Abstract






--> --> --> 参考文献 (28)
相关话题/指标 系统 北京 环境工程 微生物