删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

碳源对反硝化生物滤池运行及微生物种群的影响

本站小编 Free考研考试/2021-12-31

郑晓英1,
乔露露1,
王慰2,
李楠1,
李魁晓2
1.北京工业大学北京市水质科学与水环境恢复工程重点实验室,北京100124
2.北京城市排水集团有限责任公司科技研发中心,北京100022



Effects of carbon sources on operation and microbial population of denitrification biological filter

ZHENG Xiaoying1,
QIAO Lulu1,
WANG Wei2,
LI Nan1,
LI Kuixiao2
1.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
2.Research and Development Center of Beijing Drainage Group Co.Ltd.,Beijing 100022, China

-->

摘要
HTML全文
(0)(0)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以某城市污水厂二级出水为原水,以甲醇、乙酸钠为碳源,研究了不同碳源对反硝化生物滤池运行的影响,并借助16S rDNA测序技术对滤池生物膜的微生物群落组成和结构进行了解析。结果表明,采用逐渐增加滤速的方式进行挂膜,乙酸钠滤池在启动7 d后出水水质稳 定,NO3--N去除率在96%以上,NO2--N积累消失;甲醇滤池则需要9 d。稳定运行期,甲醇和乙酸钠滤池达到最大反硝化效率所需碳氮比均为4.5~5.5,出水TN<1.0 mg·L-1。乙酸钠滤池沿过滤方向硝酸盐氮降解较快。与甲醇相比,乙酸钠微生物产量高、运行周期短、反冲洗时间长,且药剂投加量高。从滤池脱氮效率、运行稳定性和成本等方面综合考虑,甲醇可作为最佳碳源。微生物在属水平进行聚类分析结果表明,以甲醇、乙酸钠为碳源的反硝化生物滤池中的微生物种群存在差异。甲醇滤池中与反硝化有关的属占36.68%,其中优势菌属Methylophilus,属于嗜甲基型菌属。乙酸钠滤池中与反硝化有关的菌属占58.38%。其优势菌属为Arobacter,可利用有机酸还原硝酸盐。
关键词: 脱氮/
反硝化滤池/
甲醇/
乙酸钠/
16S rDNA/
微生物群落

Abstract:The effects of different additional carbon sources on the operation of the denitrification biofilter were studied, using the secondary effluent from a municipal wastewater treatment plant as raw water. Methanol and sodium acetate were selected as carbon sources. The composition and structure of microbial community of biofilm in the biofilter were analyzed by 16S rDNA. The results showed that when hanging biofilm by gradually increased filter speed, the water quality was stable with the removal efficiency for NO3--N being over 96%. The accumulation of NO2--N disappeared after 7 days of operation for the filter using sodium acetate as carbon source. However, 9 days were needed for disappeared accumulation of NO2--N in the methanol filter. During the stable operating period, the ratios of carbon to nitrogen required for maximum denitrification efficiency were from 4.5 to 5.5, and the effluent TN was less than 1.0 mg·L-1 in both filters. Compared with methanol filter, nitrate nitrogen degraded faster along the filter direction in sodium acetate filter, which had higher yield of microorganisms, shorter running period, longer backwash time and higher chemical reagent investment. With a comprehensive consideration of the filter denitrification efficiency, operating stability and cost considerations, methanol was better than sodium acetate as carbon source. Moreover, the results of microflora clustering analysis showed that there was a significant difference in microbial community between the above investigated biofilters. The denitrification-related genera in the methanol filter accounted for 36.68%, and the dominant bacterium was Methylophilus, which is methyl-bacterium. The denitrification-related genera in the sodium acetate filter accounted for 58.38%, and the dominant bacterium was Arobacter, which can reduce nitrate through using organic acids.
Key words:nitrogen removal/
denitrification biofilter/
methanol/
sodium acetate/
16S rDNA/
microbial community.

加载中
[1] 石效卷,李璐,张涛,等.水十条 水实条:对《水污染防治计划的解读》[J]. 环境保护科学,2015,41(3):1-3 10.16803/j.cnki.issn.1004-6216.2015.03.002
[2] 马世豪,何兴海.《污水综合排放标准》的实施与监测[J]. 环境监测管理与技术,1998,10(5):24-27
[3] 李文龙,杨碧印,陈益清,等.不同外加碳源反硝化滤池的深度脱氮特性研究[J]. 水处理技术,2015,41(11):82-85
[4] 孙迎雪,胡银翠,孙云祥,等.反硝化生物滤池深度脱氮机理[J]. 环境工程学报,2012,6(6):1857-1862
[5] 高建锋,杨碧印,赵建树,等.反硝化生物滤池用于再生水脱氮效能及动力学研究[J]. 环境工程学报,2016,10(1):199-203
[6] 刘秀红,甘一萍,杨庆,等.碳源对反硝化生物滤池系统运行及微生物种群影响[J]. 水处理技术,2013,39(11):36-40
[7] BACQUET G, JORETJ C, RORGALLA F.Biofilm start-up and controlinaerated filter[J].Environmental Technology,1991,12(9):747-756 10.1080/09593339109385066
[8] 龙腾锐,方芳,郭劲松.酶促填料变速生物滤池的生产性启动研究[J]. 给水排水,2000,26(11):12-15 10.13789/j.cnki.wwe1964.2000.11.004
[9] 夏琼琼,颜秀勤,张维.生物滤池外加碳源脱氮研究[J]. 环境污染与防治,2011,33(12):56-59 10.15985/j.cnki.1001-3865.2011.12.024
[10] 张兰英,刘娜,孙立波,等.现代环境微生物技术[M]. 北京:清华大学出版社,2005
[11] 徐亚同.不同碳源对生物反硝化的影响[J]. 环境科学,1994,15(2):31-44
[12] 杨碧印,李文龙,许仕荣,等.不同外加碳源反硝化滤池的挂膜与启动特性研究[J]. 水处理技术,2015,41(4):104-107
[13] 王淑莹,殷芳芳,侯红勋,等.以甲醇作为生物外碳源的生物反硝化[J]. 北京工业大学学报,2009,35(11):1521-1526
[14] HALLIN S, ROTHMAN M, PELL M.Adaptation of denitrifying bacteria to acetate and methanol in activated sludge[J].Water Research,1996,30(6):1445-1450 10.1177/16.2.136
[15] GINIGE M P, HUGENHOLTZ P, DAIMS H, et al.Use of stable-isotope probing, full-cycle rRNA analysis and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community[J].Applied and Environmental Microbiology,2004,70(1):588-596 10.1128/ AEM.70.1.588-596.2004
[16] OSAKA T, YOSHIE S, TSUNEDA S, et al.Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J].Microbial Ecology,2006,52(2):253-266 10.1007/s00248-006-9071-7
[17] 张仲玲.反硝化脱氮外加碳源的选择[D]. 哈尔滨:哈尔滨工业大学,2009
[18] KIM J S, KIM S J, LEE B H.Effect of Alcaligenes faecalis on nitrous oxide emission and nitrogen removal in three phase fluidized bed process[J].Environment Science Health,2004,39(7):1791-1804
[19] 邓康.反硝化脱氮及其微生物特性研究[D]. 广州:华南理工大学,2010
[20] THOMSEN T R, KONG Y, NIELSEN P H.Ecophysiology of abundant denitrifying bacteria in activated sludge[J].FEMS Microbiology Ecology,2007,60(3):370-382 10.1111/j.1574-6941.2007.00309.x
[21] SEVIOUR R, NIELSEN P H, SEVIOUR R, et al.Microbial ecology of activated sludge[J].Applied Microbiology,2010,12(1):412-415 10.2166/9781780401645
[22] 陈谊,孙宝盛,张斌,等.不同MBR反应器中反硝化菌群落结构的研究[J]. 中国环境科学,2010,30(1):69-75
[23] 黄菲,梅晓洁,王志伟,等.冬季低温下MBR 与CAS 工艺运行及微生物群落特征[J]. 环境科学,2014,34(3):1002-1008 10.13227/j.hjkx.2014.03.026
[24] OSAKA T, YOSHIE S, TSUNEDA S, et al.Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J].Microbial Ecology,2006,52(2):253-266
[25] LAPIDUA A, CLUM A, LABUTTI K, et al.Genomes of three methylotrophs form a single niche reveal the genetic and metabolic divergence of the methylophilaceae[J].Journal of Bacteriology,2011,193(15):3757-3764 10.1128/JB.00404-11
[26] HAO R, LI S, LI J, et al.Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community[J].Bioresource Technology,2013,143:178-186 10.1016/j.biortech.2013.06.001
[27] SHINODA Y, SAKAI Y, UENISHI H, et al.Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp strain DNT-1[J].Applied and Environmental Microbiology,2004,70(3):1385-1392 10.1128/AEM.70.3.1385-1392.2004
[28] 师帅.前置反硝化生物滤池的脱氮效能与微生物群落结构解析[D]. 哈尔滨:哈尔滨工业大学,2014



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1064
HTML全文浏览数:753
PDF下载数:399
施引文献:0
出版历程

刊出日期:2018-05-19




-->








碳源对反硝化生物滤池运行及微生物种群的影响

郑晓英1,
乔露露1,
王慰2,
李楠1,
李魁晓2
1.北京工业大学北京市水质科学与水环境恢复工程重点实验室,北京100124
2.北京城市排水集团有限责任公司科技研发中心,北京100022
基金项目:
关键词: 脱氮/
反硝化滤池/
甲醇/
乙酸钠/
16S rDNA/
微生物群落
摘要:以某城市污水厂二级出水为原水,以甲醇、乙酸钠为碳源,研究了不同碳源对反硝化生物滤池运行的影响,并借助16S rDNA测序技术对滤池生物膜的微生物群落组成和结构进行了解析。结果表明,采用逐渐增加滤速的方式进行挂膜,乙酸钠滤池在启动7 d后出水水质稳 定,NO3--N去除率在96%以上,NO2--N积累消失;甲醇滤池则需要9 d。稳定运行期,甲醇和乙酸钠滤池达到最大反硝化效率所需碳氮比均为4.5~5.5,出水TN<1.0 mg·L-1。乙酸钠滤池沿过滤方向硝酸盐氮降解较快。与甲醇相比,乙酸钠微生物产量高、运行周期短、反冲洗时间长,且药剂投加量高。从滤池脱氮效率、运行稳定性和成本等方面综合考虑,甲醇可作为最佳碳源。微生物在属水平进行聚类分析结果表明,以甲醇、乙酸钠为碳源的反硝化生物滤池中的微生物种群存在差异。甲醇滤池中与反硝化有关的属占36.68%,其中优势菌属Methylophilus,属于嗜甲基型菌属。乙酸钠滤池中与反硝化有关的菌属占58.38%。其优势菌属为Arobacter,可利用有机酸还原硝酸盐。

English Abstract






--> --> --> 参考文献 (28)
相关话题/微生物 生物 北京 城市 技术