王茹1,
陈丽梅1
1.昆明理工大学生命科学与技术学院,昆明 650500
基金项目: 国家自然科学基金资助项目(31560071)
Performance of suspension bioreactor with fixed Rhodopseudomonas palustris for removal of formaldehyde in indoor
FENG Yong1,,WANG Ru1,
CHEN Limei1
1.Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:利用海藻酸钠及羧甲基纤维素包埋沼泽红假单胞菌海绵作为吸附剂,对甲醛进行吸收处理,其动力学行为与多孔材料相似。用这种海绵组装悬浮式生物反应器,考察其去除室内甲醛污染的性能,结果表明,海绵体积和进风量是影响反应器甲醛净化效率的关键因素。装入6 L海绵和6 L水的反应器在进风量最大(7.8 m3·min-1)时,对室内空气污染浓度为2.0 mg·m-3甲醛的净化效率约为80%。分析水箱水溶液甲醛浓度的变化,结果表明含有甲醛的空气吹入反应器后溶解于水,然后被包埋的光合菌吸收。反应器在污染甲醛浓度为3.5 mg·m-3的试剂室内运行过程中,其甲醛去除率逐渐上升,室内污染甲醛浓度逐渐降低,运行31 d后室内甲醛浓度降为0.04 mg·m-3(低于国标值),其净化甲醛污染的CADR(clean air delivery rate)值达到481.4 m3·h-1,沼泽红假单胞菌细胞的存活率为98%,说明固定沼泽红假单胞菌具有应用于室内甲醛污染去除的应用潜力。
关键词: 沼泽红假单胞菌/
悬浮式生物反应器/
室内甲醛污染/
甲醛去除率
Abstract:This study showed that the formaldehyde uptake kinetics of the sponge with embedded Rhodopseudomonas palustris (R. palustris) by alginate and carboxymethylcellulose is similar to that of porous materials. A suspension bioreactor was constructed using this sponge. The performance of this bioreactor for removal of formaldehyde pollution in indoor air was investigated. Results indicate that the sponge volume and the inlet airflow is the key factor affecting the formaldehyde removal efficiency of the reactor. The reactor filled with 6 L sponge and 6 L water had a removal efficiency of 80% for 2.0 mg·m-3 of formaldehyde in indoor air under conditions with the maximum inlet airflow (7.8 m3·min-1). The analysis for changes in the formaldehyde concentration in the water of the reactor suggests that formaldehyde was first dissolved in the water and then absorbed and transformed by the embedded R. palustris after the formaldehyde-containing air was blown into the reactor. The reactor was placed in a laboratory reagent room with 3.5 mg·m-3 formaldehyde in indoor air. During the operation of this reactor, the formaldehyde concentration in the room decreased gradually, accompanied by an increase in the formaldehyde removal efficiency of the reactor. The formaldehyde concentration in the room decreased up to 0.04 mg·m-3 (lower than the national standard) after a 31 d running. The CADR (clean air delivery rate) value of the reactor for purification of formaldehyde reached 481.4 m3·h-1. R. palustris cells maintained a survival rate with 98%. The results suggest that the fixed R. palustris has an application potential to the removal of formaldehyde pollution in indoor air.
Key words:Rhodopseudomonas palustris/
suspension bioreactor/
indoor formaldehyde pollution/
formaldehyde removal efficiency.
[1] | NAYA M, NAKANISHI J.Risk assessment of formaldehyde for the general population in Japan[J].Regulatory Toxicology & Pharmacology, 2005, 43(3):232-248 10.1016/j.yrtph.2005.08.002 |
[2] | SHINOHARA N, MIZUKOSHI A, YANAGISAWA Y.Identification of responsible volatile chemicals that induce hypersensitive reactions to multiple chemical sensitivity patients[J].Journal of Exposure Analysis & Environmental Epidemiology, 2004, 14(1):84-91 10.1038/sj.jea.7500303 |
[3] | WIPPERMANN U, FLIEGMANN J, BAUW G, et al.Maize glutathione-dependent formaldehyde dehydrogenase: Protein sequence and catalytic properties[J].Planta, 1999, 208(1):12-18 10.1007/s004250050529 |
[4] | WU F, DAVID J, CLIFFORD M, et al.Improving indoor environmental quality for public health: Impediments and policy recommendations[J].Environmental Health Perspectives, 2007, 115(6):953-957 10.1289/ehp.8986 |
[5] | BERNSTEIN J, ALEXIS N, BACCHUS H, et al.The health effects of non-industrial indoor air pollution[J].Journal of Allergy & Clinical Immunology, 2008, 121(3):585-591 10.1016/j.jaci.2007.10.045 |
[6] | SHIRAISHI F, YAMAGUCHI S, OHBUCHI Y.A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus[J].Chemical Engineering Science, 2003, 58(3/4/5/6):929-934 10.1016/S0009-2509(02)00630-9 |
[7] | LU Y, WANG D, MA C, et al.The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde[J].Building & Environment, 2010, 45(3):615-621 10.1016/j.buildenv.2009.07.019 |
[8] | 张韦, 宋中邦, 陈丽梅. 甲基营养微生物的甲醛代谢途径及其在环境生物技术中的应用[J]. 生命科学,2012, 24(3):266-273 |
[9] | SONG Z, ORITA I, FEI Y, et al.Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri, in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde[J].Biotechnology Letters, 2010, 32(10):1541-1548 10.1007/s10529-010-0324-7 |
[10] | YURIMOTO H, KATO N, SAKAI Y.Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism[J].Chemical Record, 2005, 5(6):367–375 10.1002/tcr.20056 |
[11] | XU Z J, NA Q, WANG J G, et al.Formaldehyde biofiltration as affected by spider plant[J].Bioresource Technology, 2010, 101(18):6930-6934 10.1016/j.biortech.2010.03.128 |
[12] | WANG Z, ZHANG J S.Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality[J].Building & Environment, 2011, 46(3):758-768 10.1016/j.buildenv.2010.10.008 |
[13] | WANG Z, PEI J, ZHANG J S.Modeling and simulation of an activated carbon-based botanical air filtration system for improving indoor air quality[J].Building & Environment, 2012, 54(12):109-115 10.1016/j.buildenv.2012.02.011 |
[14] | FULAZZAKY M A, TALAIEKHOZANI A, MAJID M Z A.Formaldehyde removal mechanisms in a biotrickling filter reactor[J].Ecological Engineering, 2016, 90:77-81 10.1016/j.ecoleng.2016.01.064 |
[15] | 唐雅琴, 黄兵, 刘仪柯. 光合细菌微生物产氢研究进展[J]. 安徽农业科学, 2009(2):466-468 |
[16] | 杨绍斌. 复合光合细菌对鱼塘水氨态氮H2S的去除效应[J]. 环境科学与技术, 2005, 28(4):25-26 |
[17] | NAGADOMI H, KITAMURA T, WATANABE M, et al.Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria[J].Biotechnology Letters, 2000, 22(17):1369-1374 10.1023/A:1005688229783 |
[18] | NAGADOMI H, TAKAHASI T, SASAKI K, et al.Simultaneous removal of chemical oxygen demand and nitrate in aerobic treatment of sewage wastewater using an immobilized photosynthetic bacterium of porous ceramic plates[J].World Journal of Microbiology & Biotechnology, 2000, 16(1):57-62 10.1023/A:1008947416198 |
[19] | 常会庆, 王世华, 寇太记,等. 固定化光合细菌对水体富营养化的去除效果[J]. 水资源保护, 2010, 26(3):64-67 |
[20] | 徐向阳,郑平,俞秀娥,等. 固定化光合细菌处理有机废水过程产氢的研究:Ⅱ.红假单胞菌菌株D利用有机物光产氢的特性[J]. 太阳能学报,1993,14(4):288-294 |
[21] | DE-BASHAN L E, BASHAN Y.Immobilized microalgae for removing pollutants: Review of practical aspects[J].Bioresource Technology, 2010, 101(6):1611-1627 10.1016/j.biortech.2009.09.043 |
[22] | JEONG S K, CHO J S, KONG I S, et al.Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing[J].Biotechnology & Bioprocess Engineering, 2009, 14(2):238-247 10.1007/s12257-008-0195-0 |
[23] | 李小菊. 制药废水的厌氧-好氧生物处理研究[D]. 天津:南开大学, 2005 |
[24] | 金绍黑. 有机污水微生物处理技术[J]. 技术与市场月刊, 2005(7):26 |
[25] | DELHOMENIE M C, BIBEAU L, GENDRON J, et al.A study of clogging in a biofilter treating toluene vapors[J].Chemical Engineering Journal, 2003, 94(3):211-222 10.1016/S1385-8947(03)00052-4 |
[26] | ILIUTA I, LARACHI F.Transient biofilter aerodynamics and clogging for VOC degradation[J].Chemical Engineering Science, 2004, 59(16):3293-3302 10.1016/j.ces.2004.05.004 |
[27] | RYU H W, CHO K S, CHUNG D J.Relationships between biomass, pressure drop, and performance in a polyurethane biofilter[J].Bioresource Technology, 2010, 101(6):1745-51 10.1016/j.biortech.2009.10.018 |
[28] | HUANG J S, JIH C G, SUNG T J.Performance enhancement of suspended-growth reactors with phototrophs[J].Journal of Environmental Engineering, 1999, 125:501-507 10.1061/(ASCE)0733-9372(1999)125:6(501) |
[29] | NEAL A B, LOEHR R C.Use of biofilters and suspended-growth reactors to treat VOCs[J].Waste Management, 2000, 20(1):59-68 10.1016/S0956-053X(99)00297-4 |
[30] | CHEN X, QIAN W, KONG L, et al.Performance of a suspended biofilter as a new bioreactor for removal of toluene[J].Biochemical Engineering Journal, 2015, 98:56-62 10.1016/j.bej.2015.02.025 |
[31] | 闻春博, 雷中方. 活性炭/沸石投加型活性污泥工艺的研究进展[J]. 环境科学与管理, 2008, 33(1):86-89 |
[32] | 曹斌, 王晓昌, 王恩让,等. 复合生物反应器处理城市污水的试验研究[J]. 给水排水, 2003, 29(12):28-31 10.3969/j.issn.1002-8471.2003.12.010 |
[33] | SIEFERT E, IRGENS R L, PFENNIG N.Phototrophic purple and green bacteria in a sewage treatment plant.[J].Applied & Environmental Microbiology, 1978, 35(1):38-44 |
[34] | 丁成. 固定化光合细菌对含酚废水的生物降解试验[J]. 水资源保护,2008,24(6):93-95 |
[35] | MADUKASI E I, CHUNHUA H, ZHANG G.Isolation and application of a wild strain photosynthetic bacterium to environmental waste management[J].International Journal of Environmental Science & Technology, 2011, 8(3):513-522 10.1007/BF03326237 |
[36] | 雷玉珠, 李昆志. 一株光合细菌的分离鉴定及其净化甲醛能力的研究[J]. 中国微生态学杂志, 2017, 29(3):261-267 |
[37] | 雷玉珠. 光合细菌分离鉴定及其应用研究[D]. 昆明:昆明理工大学, 2017 |
[38] | TIWARI A.Removal of Chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose[J].Journal of Dispersion Science and Technology, 2011, 32(8):1075-1082 10.1080/01932691003659403 |
[39] | DEWANGAN T, TIWARI A, BAJPAI A K.Adsorption of Hg(II) ions onto binary biopolymeric beads of carboxymethyl cellulose and alginate[J].Journal of Dispersion Science and Technology, 2010, 31(6):844-851 10.1080/01932690903212941 |
[40] | PERSIDSKY M D, BAILLIE G S.Fluorometric test of cell membrane integrity[J].Cryobiology, 1977, 14(3):322-331 10.1016/0011-2240(77)90179-1 |
[41] | KRISHAN A.Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining[J].Journal of Cell Biology, 1975, 66(1):188-193 10.1083/jcb.66.1.188 |
[42] | 左卫元, 仝海娟, 史兵方. 改性活性炭对废水中甲醛的吸附研究[J]. 安全与环境学报, 2015, 15(1):188-192 10.13637/j.issn.1009-6094.2015.01.039 |
[43] | LU N, PEI J, ZHAO Y, et al.Performance of a biological degradation method for indoor formaldehyde removal[J].Building & Environment, 2012, 57:253-258 10.1016/j.buildenv.2012.05.007 |
[44] | WANG Z, ZHANG J S.Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality[J].Building & Environment, 2011, 46(3):758-768 10.1016/j.buildenv.2010.10.008 |
[45] | RAGHUVANSHI S, BABU B V.Experimental studies and kinetic modeling for removal of methyl ethyl ketone using biofiltration[J].Bioresource Technology, 2009, 100(17):3855-3861 10.1016/j.biortech.2009.03.025 |
[46] | PLAISANCE H, BLONDEL A, DESAUZIERS V, et al.Field investigation on the removal of formaldehyde in indoor air[J].Building & Environment, 2013, 70:277-283 10.1016/j.buildenv.2013.08.032 |
[47] | FULAZZAKY M A.Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column[J].Chemical Engineering Journal, 2011, 166(3):832-840 10.1016/j.cej.2010.11.052 |
[48] | XU Z, HOU H.Formaldehyde removal from air by a biodegradation system[J].Bulletin of Environmental Contamination & Toxicology, 2010, 85(1):28-31 10.1007/s00128-010-9975-2 |
[49] | 欧阳科, 谢珊, 刘辉. 曝气量对膜生物反应器污泥特性和膜污染的影响[J]. 中国给水排水, 2011, 27(13):19-22 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1475
HTML全文浏览数:920
PDF下载数:335
施引文献:0
出版历程
刊出日期:2018-04-22
-->
固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除
冯永1,,王茹1,
陈丽梅1
1.昆明理工大学生命科学与技术学院,昆明 650500
基金项目: 国家自然科学基金资助项目(31560071)
关键词: 沼泽红假单胞菌/
悬浮式生物反应器/
室内甲醛污染/
甲醛去除率
摘要:利用海藻酸钠及羧甲基纤维素包埋沼泽红假单胞菌海绵作为吸附剂,对甲醛进行吸收处理,其动力学行为与多孔材料相似。用这种海绵组装悬浮式生物反应器,考察其去除室内甲醛污染的性能,结果表明,海绵体积和进风量是影响反应器甲醛净化效率的关键因素。装入6 L海绵和6 L水的反应器在进风量最大(7.8 m3·min-1)时,对室内空气污染浓度为2.0 mg·m-3甲醛的净化效率约为80%。分析水箱水溶液甲醛浓度的变化,结果表明含有甲醛的空气吹入反应器后溶解于水,然后被包埋的光合菌吸收。反应器在污染甲醛浓度为3.5 mg·m-3的试剂室内运行过程中,其甲醛去除率逐渐上升,室内污染甲醛浓度逐渐降低,运行31 d后室内甲醛浓度降为0.04 mg·m-3(低于国标值),其净化甲醛污染的CADR(clean air delivery rate)值达到481.4 m3·h-1,沼泽红假单胞菌细胞的存活率为98%,说明固定沼泽红假单胞菌具有应用于室内甲醛污染去除的应用潜力。
English Abstract
Performance of suspension bioreactor with fixed Rhodopseudomonas palustris for removal of formaldehyde in indoor
FENG Yong1,,WANG Ru1,
CHEN Limei1
1.Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Keywords: Rhodopseudomonas palustris/
suspension bioreactor/
indoor formaldehyde pollution/
formaldehyde removal efficiency
Abstract:This study showed that the formaldehyde uptake kinetics of the sponge with embedded Rhodopseudomonas palustris (R. palustris) by alginate and carboxymethylcellulose is similar to that of porous materials. A suspension bioreactor was constructed using this sponge. The performance of this bioreactor for removal of formaldehyde pollution in indoor air was investigated. Results indicate that the sponge volume and the inlet airflow is the key factor affecting the formaldehyde removal efficiency of the reactor. The reactor filled with 6 L sponge and 6 L water had a removal efficiency of 80% for 2.0 mg·m-3 of formaldehyde in indoor air under conditions with the maximum inlet airflow (7.8 m3·min-1). The analysis for changes in the formaldehyde concentration in the water of the reactor suggests that formaldehyde was first dissolved in the water and then absorbed and transformed by the embedded R. palustris after the formaldehyde-containing air was blown into the reactor. The reactor was placed in a laboratory reagent room with 3.5 mg·m-3 formaldehyde in indoor air. During the operation of this reactor, the formaldehyde concentration in the room decreased gradually, accompanied by an increase in the formaldehyde removal efficiency of the reactor. The formaldehyde concentration in the room decreased up to 0.04 mg·m-3 (lower than the national standard) after a 31 d running. The CADR (clean air delivery rate) value of the reactor for purification of formaldehyde reached 481.4 m3·h-1. R. palustris cells maintained a survival rate with 98%. The results suggest that the fixed R. palustris has an application potential to the removal of formaldehyde pollution in indoor air.