删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

养耕共生系统中含氮污染物的去除特性

本站小编 Free考研考试/2021-12-31

张博宇1,,
罗鹏翾1,
庞浩然1,
高月淑1,
张振家1,
李春杰1
1.上海交通大学环境科学与工程学院,上海 200240
基金项目: 上海市科学技术发展基金资助项目(16ZR1417400)




Nitrogen pollutants removal characteristics in aquaponic system

ZHANG Boyu1,,
LUO Pengxuan1,
PANG Haoran1,
GAO Yueshu1,
ZHANG Zhenjia1,
LI Chunjie1
1.School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China

-->

摘要
HTML全文
(0)(0)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了研究养耕共生系统对循环养殖水质的控制效果,尤其是对含氮污染物的去除效果,在实验大棚内搭建了养耕共生系统,考察了循环系统90 d运行过程中的水质状况及鱼菜生长状况。在此基础上,通过静态运行实验分别考察了水耕栽培单元(平板种植架和管廊种植架)和固定化微生物单元(包埋硝化菌和弹性填料)对含氮污染物的净化效果。结果表明:循环运行实验中,高、低密度养殖池中TAN和NO2-N均保持在安全浓度以下,鱼类和蔬菜生长良好且有明显生物量增长;静态实验中,2种水耕栽培单元内TAN、NO2-N和NO3-N浓度随反应时间下降,且与时间呈线性关系,空心菜对NO3-N的净化速率最快,TAN其次, NO2-N最慢;2种固定化微生物单元对TAN和NO2-N的去除符合一级反应动力学特征,低浓度下降解能力显著;水耕栽培单元对循环养殖水中含氮污染物均有明显的去除作用,平板种植架对TAN、NO2-N、NO3-N和TN的24 h去除率分别为71.41%、45.72%、21.93%和23.14%,管廊种植架对上述指标的24 h去除率分别为43.54%、38.23%、19.12%和20.01%;固定化包埋微生物单元对TAN和NO2-N有明显的去除作用,包埋硝化菌对TAN和NO2-N的24 h去除率分别为65.51%和43.42%,弹性填料对上述指标的24 h去除率分别为7.53%和8.14%。
关键词: 养耕共生系统/
含氮污染物去除/
静态实验/
水耕栽培/
固定化微生物

Abstract:In order to investigate the water controlling effect of aquaponic system, especially the removal or nitrogen pollutants in aquaculture water, aquaponic system was constructed in experimental greenhouse and operated for 90 days. The water quality, fish and plants growth were investigated. The static tests were carried out to investigate the performance of nitrogen removal by hydroponics unit and immobilized biofilm unit. It concluded that the concentration of TAN and NO2-N in aquaponic system met the water quality for the fish. The good productivity for both fish and vegetable was achieved. The static test showed that the concentration of TAN, NO2-N and NO3-N in hydroponics units decreased linearly with reaction time, being with the highest removal rate of NO3-N followed by TAN and then NO2-N. The removal efficiency of TAN, NO2-N, NO3-N and TN in hydroponics of media filled unit were 71.41%, 45.72%, 21.93% and 23.14%, and those in hydroponics of nutrient film technique unit were 43.54%, 38.23%, 19.12% and 20.01%. While in immobilized biolfilm unit, the removal ability for TAN and NO2-N under low concentration was observed, removal performance followed first-order kinetics equation. The removal efficiency of TAN and NO2-N for immobilized biofilm unit of mass bio-system (MBS) was 65.51% and 43.42%, and those for immobilized biofilm unit of fibrebiofilter were 7.53% and 8.14% respectively.
Key words:aquaponic system/
nitrogen pollutants removal/
static test/
hydroponics/
immobilized biofilm.

加载中
[1] BERNSTEIN S.Aquaponic Gardening: A Step-by-Step Guide to Raising Vegetables and Fish Together[M].Gabriola Island:New Society Publishers,2011:5-10
[2] RAKOCY J E.Aquaponics-Integrating Fish and Plant Culture[M].Oxford: Wiley-Blackwell, 2012:344-386
[3] 萧蕾,刘雅琦, 肖毅强.美国养耕共生系统技术简析与展望[J]. 南方建筑,2014(4):124-128
[4] THORARINSDOTTIR R I.Aquaponics Guidelines[M].Reykjavik:Haskolaprent, 2015:18-26
[5] MEDINA M, JAYACHANDRAN K, BHAT M G, et al.Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system[J].Aquaculture International,2016,24(1):415-427 10.1007/s10499-015-9934-3
[6] LOVE D C, FRY J P, LI X, et al.Commercial aquaponics production and profitability: Findings from an international survey[J].Aquaculture,2015,435:67-74 10.1016/j.aquaculture.2014.09.023
[7] RAKOCY J E, SHULTZ R C, BAILEY D S, et al.Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system[J].Acta Horticulturae,2004,648:63-69 10.17660/ActaHortic.2004.648.8
[8] RAKOCY J E, BAILEY D S, SHULTZ R C, et al.Preliminary evaluation of organic waste from two aquaculture systems as a source of inorganic nutrients for hydroponics[J].Acta Horticulturae,2005,742:201-208 10.17660/ActaHortic.2007.742.27
[9] WANG J, BOGDAN S, DEANA J, et al.Update on tilapia and vegetable production in the UVI aquaponic system[J].Angewandte Chemie,2010,49(23):4056-4060
[10] PANTANELLA E, DANAHER J, RAKOCY J E, et al.Alternative media types for seedling production of lettuce and basil[J].Acta Horticulturae,2011,891:257-264 10.17660/ActaHortic.2011.891.31
[11] DEDIU L, CRISTEA V, XIAOSHUAN Z.Waste production and valorization in an integrated aquaponic system with bester and lettuce[J].African Journal of Biotechnology,2012,11(9):2349-2358 10.5897/AJB11.2829
[12] WONGKIEW S, HU Z, CHANDRAN K, et al.Nitrogen transformations in aquaponic systems: A review[J].Aquacultural Engineering,2017,76:9-19 10.1016/j.aquaeng.2017.01.004
[13] EBELING J M, TIMMONS M B.Recirculating Aquaculture Systems[M].Oxford:Wiley-Blackwell,2012:245-277
[14] GRABER A, JUNGE R.Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production[J].Desalination,2009,246(1/2/3):147-156 10.1016/j.desal.2008.03.048
[15] DIVER S.Aquaponics-integration of hydroponics with aquaculture[J/OL]. [2018-01-29].https://attra.ncat.org/attra-pub/summaries/summary.php?pub=56.pdf, 2006
[16] EL-SAYED A F M.Tilapia Culture[M].Cambridge: CABI Publishing,2006:3-9
[17] SEAWRIGHT D E, STICKNEY R R, WALKER R B.Nutrient dynamics in integrated aquaculture–hydroponics systems[J].Aquaculture,1998,160(3):215-237 10.1016/S0044-8486(97)00168-3
[18] LAM S S, MA N L, JUSOH A, et al.Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components[J].International Biodeterioration & Biodegradation,2015,102:107-115 10.1016/j.ibiod.2015.03.01
[19] GRANADA L, SOUSA N, LOPES S, et al.Is integrated multitrophic aquaculture the solution to the sectors’ major challenges: A review[J].Reviews in Aquaculture,2016,8(3):283-300 10.1111/raq.12093
[20] TURCIOS A E, PAPENBROCK J.Sustainable treatment of aquaculture effluents: What can we learn from the past for the future?[J].Sustainability, 2014, 6(2):836-856 10.3390/su6020836
[21] MASSER M P, RAKOCY J E, LOSORDO T M.Recirculating aquaculture tank production systems[J].World Agriculture,2001,32(1):18-22
[22] DELONG D P, LOSORDO T.How to Start a Biofilter[M].Stoneville:SRAC Publications,2012:10-14
[23] 宋红桥,管崇武,李月. 水培植物对循环水养鱼系统的水质净化研究[J]. 渔业现代化, 2013, 40(4):18-20 10.3969/j.issn.1007-9580.2013.04.004
[24] 吕哲,倪志凡,肖德茂,等. 生态坝对阳澄湖养殖水体的原位修复研究[J]. 中国给水排水,2015,31(1):22-26
[25] 倪志凡,黎岭芳,陆嘉麒,等. 生态坝微生物与水生植物的水质净化机制研究[J]. 中国给水排水,2016,32(5):32-37
[26] 欧阳丽华,周伟丽,张振家,等. 包埋固定化微生物的硫自养反硝化实验研究[J]. 环境科学,2011,32(6):1644-1652
[27] 王静萱,李军,张振家,等. 固定化包埋颗粒对二级出水深度脱氮特性研究[J]. 环境科学学报,2013,33(2):389-394
[28] 葛晓虹,张振家,王毅军. 固定化包埋硝化菌去除源水中氨氮研究[J]. 中国给水排水,2006,22(3):51-54 10.3321/j.issn:1000-4602.2006.03.014
[29] 董亚梅. 聚氨酯包埋硝化菌颗粒的制备及其应用研究[D]. 上海:上海交通大学,2012
[30] 国家环境保护总局.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002:211-243
[31] WALSH R, MARTIN E, DARVESH S.A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters[J].Biochimicaet Biophysica Acta, 2010, 1800(1):1-5 10.1016/j.bbagen.2009.10.007
[32] 王璐,迟莉娜,乔向利,等. 固定化包埋硝化菌处理微污染源水的研究[J]. 中国给水排水,2008,24(3):56-59 10.3321/j.issn:1000-4602.2008.03.015



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:830
HTML全文浏览数:532
PDF下载数:312
施引文献:0
出版历程

刊出日期:2018-05-19




-->








养耕共生系统中含氮污染物的去除特性

张博宇1,,
罗鹏翾1,
庞浩然1,
高月淑1,
张振家1,
李春杰1
1.上海交通大学环境科学与工程学院,上海 200240
基金项目: 上海市科学技术发展基金资助项目(16ZR1417400)
关键词: 养耕共生系统/
含氮污染物去除/
静态实验/
水耕栽培/
固定化微生物
摘要:为了研究养耕共生系统对循环养殖水质的控制效果,尤其是对含氮污染物的去除效果,在实验大棚内搭建了养耕共生系统,考察了循环系统90 d运行过程中的水质状况及鱼菜生长状况。在此基础上,通过静态运行实验分别考察了水耕栽培单元(平板种植架和管廊种植架)和固定化微生物单元(包埋硝化菌和弹性填料)对含氮污染物的净化效果。结果表明:循环运行实验中,高、低密度养殖池中TAN和NO2-N均保持在安全浓度以下,鱼类和蔬菜生长良好且有明显生物量增长;静态实验中,2种水耕栽培单元内TAN、NO2-N和NO3-N浓度随反应时间下降,且与时间呈线性关系,空心菜对NO3-N的净化速率最快,TAN其次, NO2-N最慢;2种固定化微生物单元对TAN和NO2-N的去除符合一级反应动力学特征,低浓度下降解能力显著;水耕栽培单元对循环养殖水中含氮污染物均有明显的去除作用,平板种植架对TAN、NO2-N、NO3-N和TN的24 h去除率分别为71.41%、45.72%、21.93%和23.14%,管廊种植架对上述指标的24 h去除率分别为43.54%、38.23%、19.12%和20.01%;固定化包埋微生物单元对TAN和NO2-N有明显的去除作用,包埋硝化菌对TAN和NO2-N的24 h去除率分别为65.51%和43.42%,弹性填料对上述指标的24 h去除率分别为7.53%和8.14%。

English Abstract






--> --> --> 参考文献 (32)
相关话题/实验 微生物 系统 养殖 环境科学