陈家庆1,
汤水清2,
朱玲1,
姬宜朋1
1.北京石油化工学院环境工程系, 北京 102617
2.中国核电工程有限公司, 北京 100840
基金项目: 北京市教委科技发展计划重点项目暨北京市自然科学基金重点项目(B类)(KZ201410017019)
Experiment and numerical simulation of gas-liquid two phase flow in on-board refueling vapor recovery system
LIU Meili1,,CHEN Jiaqing1,
TANG Shuiqing2,
ZHU Ling1,
JI Yipeng1
1.Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.China Nuclear Power Engineering Co.Ltd., Beijing 100840, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:合理分析车载加油油气回收系统(ORVR)内气液两相的流动特性对油气排放控制技术的实施具有重要意义。以ORVR加油系统为对象,采用高速摄像、粒子动态分析仪(PDA)实验测量和CFD数值模拟相结合的方法,对ORVR车辆加油过程中的气液两相流动特性进行了系统研究,讨论了加油量对加油管内流场和压力场的影响。结果表明,随着加油速度的增大,加油管口的射流卷吸增强,气液两相流动过程中的湍流程度加剧,液流冲击与破碎严重,涡旋现象明显;随着加油速度的增大,气液掺混严重,液体自由表面边界逐渐模糊;加油过程中加油管和燃油箱内气相压力的变化分为2个阶段:开始加油时气相压力迅速增大,在5~8 s内达到峰值;然后气相压力逐渐减小,最终趋于稳定。
关键词: 加油排放/
车载加油油气回收/
流动特性/
数值模拟
Abstract:An analysis of the gas-liquid two-phase flow in on-board refueling vapor recovery (ORVR) system is of great importance to implement the evaporation emissions control technology.The flow characteristic of gas-liquid two phase of ORVR was investigated using the research methods, such as numerical simulation and experimental measurement with particle doppler dynamic analyzer (PDA) and high-speed camera. The results of influence of refueling velocity show that with the increasing of refueling velocity, the jet entrainment near the pipe inlet increases and the flow turbulence is intensified. At the same time, the increased refueling velocity makes serious fluid impingement and breakage, inducing the more obvious vortex phenomenon. In addition, as the refueling velocity increases, the gas-liquid mixing is increased and the free surface of liquid is gradually blurred. The change of vapor pressure comes in two stages in both refueling pipe and fuel tank. At beginning, the gas pressure increases rapidly and reaches peak within 5 to 8 seconds. Then the gas pressure decreases and becomes stable in the end.
Key words:refueling emission/
on-board refueling vapour recovery(ORVR)/
flow characteristic/
numerical simulation.
[1] | 中华人民共和国国家环境保护部.轻型汽车污染物排放限值及测量方法:中国第六阶段[S].北京, 2016 |
[2] | WONGWISES S, CHANCHAONA S, RATTANAPRAYURA I.Displacement losses from the refueling operation of passenger cars[J].International Journal of Science and Technology,1997,2(1):22-29 |
[3] | 朱玲, 陈家庆, 王耔凝.车载加油油气回收ORVR系统应用进展[J].油气储运,2015,4(5):469-476 |
[4] | 陈家庆, 王建宏, 曹建树.美国加油站油气排放控制发展历程简述[J].石油库与加油站,2008,7(4):38-41 |
[5] | 黄玉虎, 常耀卿, 任碧琪,等.北京市1990—2030年加油站汽油VOCs排放清单[J].环境科学研究,2016,9(7):945-951 |
[6] | USA Environmental Protection Agency.Onboard refueling vapor recovery: Evaluation of the ORVR program in the United States:EPA-HQOAR-2010-1076 FRL-9671-3[S].Washington D C: EPA, 2010 |
[7] | BANERJEE R, ISAAC K, OLIVER L, et al.A numerical study of automotive gas tank filler pipe two phase flow[C].SAE Technical Paper:2001-01-0732 |
[8] | BANERJEE R, ISAAC K, OLIVER L, et al.Features of automotive gas tank filler pipe two-phase flow: Experiments and computational fluid dynamics simulations[J].Journal of Engineering for Gas Turbines and Power,2002,4(2):412-420 |
[9] | BANERJEE R, ISAAC K.An algorithm to determine the mass transfer rate from a pure liquid surface using the volume of fluid multiphase model[J].International Journal of Engine Research,2004,5(1):23-37 |
[10] | FACKRELL S, MASTROIANNI M, RANKIN G W.Model of the filling of an automotive fuel tank[J].Mathematical and Computer Modelling,2003,8(5/6):519-532 |
[11] | WIESCHE S.Simulation of automotive fuel tank filler pipe flows[J].Forschung in Ingenieurwesen,2004,8(3):139-149 |
[12] | MATTEO L, FORTUNATO F, OLIVA P.Sloshing analysis of an automotive fuel tank[C].SAE Technical Paper:2006-01-1006 |
[13] | 陈家庆, 朱玲.油气回收与排放控制技术[M].北京: 中国石化出版社,2010 |
[14] | 陈家庆, 张男, 王金惠, 等.机动车加油过程中气液两相流动特性的CFD数值模拟[J].环境科学,2010,2(12):3710-3716 |
[15] | 汤水清, 陈家庆, 刘美丽, 等.ORVR系统加油管液封性能数值模拟[J].汽车工程学报,2016,6(3):187-195 |
[16] | 蔡锦榕, 何仁, 韦海燕.控制轿车加油排放的ORVR技术综述[J].车用发动机, 2009(2):1-5 |
[17] | 韦海燕, 何仁, 蔡锦榕.加载ORVR系统的轿车加油排放数学模型[J].交通运输工程学报, 2010,0(1):56-59 |
[18] | 汪智, 何仁.基于Fluent仿真的ORVR加油管液封设计[J].重庆理工大学学报(自然科学版),2014,8(2):16-21 |
[19] | GUEYFFIER D, LI J, NADIM A, et al.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J].Journal of Computational Physics,1999,2(2):423-456 |
[20] | 任碧琪, 常耀卿, 刘明宇, 等.北京加油站加油速率与车载油气回收系统的兼容性[J].环境工程,2015,3(S1):487-490 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1078
HTML全文浏览数:712
PDF下载数:415
施引文献:0
出版历程
刊出日期:2018-02-08
-->
车载加油油气回收系统中气液两相流动特性的实验和数值模拟
刘美丽1,,陈家庆1,
汤水清2,
朱玲1,
姬宜朋1
1.北京石油化工学院环境工程系, 北京 102617
2.中国核电工程有限公司, 北京 100840
基金项目: 北京市教委科技发展计划重点项目暨北京市自然科学基金重点项目(B类)(KZ201410017019)
关键词: 加油排放/
车载加油油气回收/
流动特性/
数值模拟
摘要:合理分析车载加油油气回收系统(ORVR)内气液两相的流动特性对油气排放控制技术的实施具有重要意义。以ORVR加油系统为对象,采用高速摄像、粒子动态分析仪(PDA)实验测量和CFD数值模拟相结合的方法,对ORVR车辆加油过程中的气液两相流动特性进行了系统研究,讨论了加油量对加油管内流场和压力场的影响。结果表明,随着加油速度的增大,加油管口的射流卷吸增强,气液两相流动过程中的湍流程度加剧,液流冲击与破碎严重,涡旋现象明显;随着加油速度的增大,气液掺混严重,液体自由表面边界逐渐模糊;加油过程中加油管和燃油箱内气相压力的变化分为2个阶段:开始加油时气相压力迅速增大,在5~8 s内达到峰值;然后气相压力逐渐减小,最终趋于稳定。
English Abstract
Experiment and numerical simulation of gas-liquid two phase flow in on-board refueling vapor recovery system
LIU Meili1,,CHEN Jiaqing1,
TANG Shuiqing2,
ZHU Ling1,
JI Yipeng1
1.Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.China Nuclear Power Engineering Co.Ltd., Beijing 100840, China
Keywords: refueling emission/
on-board refueling vapour recovery(ORVR)/
flow characteristic/
numerical simulation
Abstract:An analysis of the gas-liquid two-phase flow in on-board refueling vapor recovery (ORVR) system is of great importance to implement the evaporation emissions control technology.The flow characteristic of gas-liquid two phase of ORVR was investigated using the research methods, such as numerical simulation and experimental measurement with particle doppler dynamic analyzer (PDA) and high-speed camera. The results of influence of refueling velocity show that with the increasing of refueling velocity, the jet entrainment near the pipe inlet increases and the flow turbulence is intensified. At the same time, the increased refueling velocity makes serious fluid impingement and breakage, inducing the more obvious vortex phenomenon. In addition, as the refueling velocity increases, the gas-liquid mixing is increased and the free surface of liquid is gradually blurred. The change of vapor pressure comes in two stages in both refueling pipe and fuel tank. At beginning, the gas pressure increases rapidly and reaches peak within 5 to 8 seconds. Then the gas pressure decreases and becomes stable in the end.