删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

纳米二氧化铈的潜在生态风险及毒性作用机制研究进展

本站小编 Free考研考试/2021-12-30

许伊1,2,
杨士红1,
尤国祥2,
侯俊2,,
1. 河海大学农业科学与工程学院, 南京 210098;
2. 河海大学环境学院, 浅水湖泊综合治理与资源开发教育部重点实验室, 南京 210098
作者简介: 许伊(1990-),女,博士,研究方向为农业水土环境,E-mail:xuyi_0623@126.com.
通讯作者: 侯俊,hjy_hj@hhu.edu.cn
基金项目: 国家自然科学基金资助项目(52039003);中央高校基本科研业务费专项资金资助项目(B210202114);国家自然科学基金青年基金资助项目(52009031);中国博士后科学基金面上项目(2020M671326,2020M681478)


中图分类号: X171.5


Review of the Potential Ecological Risks and Toxicity Mechanisms of Nanoceria

Xu Yi1,2,
Yang Shihong1,
You Guoxiang2,
Hou Jun2,,
1. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China;
2. Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
Corresponding author: Hou Jun,hjy_hj@hhu.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(78)
相关文章
施引文献
资源附件(0)
访问统计

摘要:作为重要的纳米稀土化合物,纳米二氧化铈(CeO2)被广泛应用于工、农、医学等领域,随之而来的是大量的纳米CeO2在其生产使用和处理处置等过程中被释放进入到环境中,进而导致其生物安全性受到越来越多的关注。本文从纳米CeO2对细胞、组织器官、植物、水生生物和土壤生物产生的毒性效应入手,系统综述了纳米CeO2的潜在环境生态风险;进一步从物理损伤和化学抑制2个方面剖析了纳米CeO2的生物毒性作用机制;最后基于已有的关于纳米CeO2生态风险的研究中存在的不足对未来发展方向进行了展望。本文旨在为纳米CeO2的生态安全评价提供理论基础和科学依据。
关键词: 纳米二氧化铈/
植物/
微生物/
细胞毒性/
氧化损伤/
生态风险

Abstract:As one of the most important nano-rare earth compounds, nanoceria (nano-CeO2) has been widely applied in industrial, agricultural and medical areas. Subsequently, large amounts of nano-CeO2 are inevitably released into the environment during their production, utilization and disposal processes. Thereby, the biological safety of released nano-CeO2 has attracted more and more attention. In this paper, the toxicity effects of nano-CeO2 on cells, tissue and organs, plants, aquatic organisms and soil organisms are systemically reviewed to illustrate the potential ecological environmental risks of nano-CeO2. Furthermore, the biotoxicity mechanisms of nano-CeO2 are explored from the aspects of physical damage and chemical inhibition. At last, the further research directions are proposed based on the shortages existing in the current studies about the ecological risks of nano-CeO2. The aim of this review is to provide theoretical and scientific basis for the evaluation of the ecological safety of nano-CeO2.
Key words:nano-ceria/
plant/
microbes/
cytotoxicity/
oxidative damage/
ecological risks.

加载中
Nowack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22
Chow J C, Watson J G, Savage N, et al. Nanoparticles and the environment[J]. Journal of the Air & Waste Management Association, 2005, 55(10):1411-1417
苗令占, 王沛芳, 侯俊, 等. 金属纳米材料对不同微生物聚集体的毒性研究进展[J]. 水资源保护, 2019, 35(1):73-78,94 Miao L Z, Wang P F, Hou J, et al. Research progress on toxicity of metallic nanomaterials to different microbial aggregates[J]. Water Resources Protection, 2019, 35(1):73-78,94(in Chinese)
侯俊, 次瀚林, 吕博文, 等. 典型人工纳米材料的水环境行为研究进展[J]. 水资源保护, 2017, 33(6):1-8,19 Hou J, Ci H L, Lv B W, et al. Research progress of water environment behavior of typical engineered nanomaterials[J]. Water Resources Protection, 2017, 33(6):1-8,19(in Chinese)
Dossumov K, Ergazieva G E, Ermagambet B T, et al. Role of ceria in several energy-related catalytic transformations[J]. Chemical Papers, 2020, 74(2):373-388
Gottschalk F, Lassen C, Kjoelholt J, et al. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment[J]. International Journal of Environmental Research and Public Health, 2015, 12(5):5581-5602
European Commission. Commission staff working paper types and uses of nanomaterials, including safety aspects. Accompanying the "Communication from the commission to the European Parliament, the Council and the European Economic and Social Committee on the Secondary Regulatory Review on Nanomaterials" SWD(2012)288 Final. Brussels:European Commission, 2012
Pagano G, Thomas P J, Di Nunzio A, et al. Human exposures to rare earth elements:Present knowledge and research prospects[J]. Environmental Research, 2019, 171:493-500
Garner K L, Suh S, Keller A A. Assessing the risk of engineered nanomaterials in the environment:Development and application of the nanoFate model[J]. Environmental Science & Technology, 2017, 51(10):5541-5551
You G X, Hou J, Xu Y, et al. Surface properties and environmental transformations controlling the bioaccumulation and toxicity of cerium oxide nanoparticles:A critical review[J]. Reviews of Environmental Contamination and Toxicology, 2021, 253:155-206
Keller A A, Lazareva A. Predicted releases of engineered nanomaterials:From global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1):65-70
Lin W S, Huang Y W, Zhou X D, et al. Toxicity of cerium oxide nanoparticles in human lung cancer cells[J]. International Journal of Toxicology, 2006, 25(6):451-457
Correia A T, Rebelo D, Marques J, et al. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss:Assessment of oxidative stress, neurotoxicity and histological alterations[J]. Environmental Toxicology and Pharmacology, 2019, 68:27-36
Gojova A, Lee J T, Jung H S, et al. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells[J]. Inhalation Toxicology, 2009, 21(Sup1l):123-130
Courbiere B, Auffan M, Rollais R, et al. Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes[J]. International Journal of Molecular Sciences, 2013, 14(11):21613-21628
Pierscionek B K, Li Y B, Yasseen A A, et al. Nanoceria have no genotoxic effect on human lens epithelial cells[J]. Nanotechnology, 2010, 21(3):035102
Cheng G L, Guo W, Han L, et al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways[J]. Toxicology in Vitro, 2013, 27(3):1082-1088
Park E J, Choi J, Park Y K, et al. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells[J]. Toxicology, 2008, 245(1-2):90-100
Tarnuzzer R W, Colon J, Patil S, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage[J]. Nano Letters, 2005, 5(12):2573-2577
Schulte P A, Leso V, Niang M, et al. Current state of knowledge on the health effects of engineered nanomaterials in workers:A systematic review of human studies and epidemiological investigations[J]. Scandinavian Journal of Work, Environment & Health, 2019, 45(3):217-238
Srinivas A, Rao P J, Selvam G, et al. Acute inhalation toxicity of cerium oxide nanoparticles in rats[J]. Toxicology Letters, 2011, 205(2):105-115
Ma J Y, Zhao H W, Mercer R R, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats[J]. Nanotoxicology, 2011, 5(3):312-325
Aalapati S, Ganapathy S, Manapuram S, et al. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice[J]. Nanotoxicology, 2014, 8(7):786-798
焦欢, 冯昶, 范广勤, 等. 纳米氧化铈对小鼠肝肾功能的慢性影响[J]. 中国工业医学杂志, 2013, 26(1):39-41Jiao H, Feng C, Fan G Q, et al. Survey of chronic effect of nano cerium oxide on hepatic and renal functions in mice[J]. Chinese Journal of Industrial Medicine, 2013, 26(1):39-41(in Chinese)
陈陵, 赵学成, 邓琼, 等. 纳米氧化铈急性染毒对雄性小鼠体重和脏器系数及血常规的影响[J]. 环境与健康杂志, 2010, 27(10):899-902
De La Torre Roche R, Pagano L, Majumdar S, et al. Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini):Contaminant bioaccumulation and translocation[J]. NanoImpact, 2018, 11:136-145
Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas J A, et al. Cerium biomagnification in a terrestrial food chain:Influence of particle size and growth stage[J]. Environmental Science & Technology, 2016, 50(13):6782-6792
Zhang P, Ma Y H, Zhang Z Y, et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)[J]. Environmental Science & Technology, 2012, 46(3):1834-1841
Hong J, Peralta-Videa J R, Rico C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants[J]. Environmental Science & Technology, 2014, 48(8):4376-4385
Arai Y, Dahle J T. Redox-ligand complexation controlled chemical fate of ceria nanoparticles in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26):6646-6653
Layet C, Auffan M, Santaella C, et al. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles[J]. Environmental Science & Technology, 2017, 51(17):9756-9764
Priester J H, Ge Y, Mielke R E, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37):E2451-E2456
López-Moreno M L, De La Rosa G, Hernández-Viezcas J A, et al. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species[J]. Journal of Agricultural and Food Chemistry, 2010, 58(6):3689-3693
Hernandez-Viezcas J A, Castillo-Michel H, Andrews J C, et al. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)[J]. ACS Nano, 2013, 7(2):1415-1423
Bandyopadhyay S, Peralta-Videa J R, Plascencia-Villa G, et al. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium:Use of advanced microscopic and spectroscopic techniques[J]. Journal of Hazardous Materials, 2012, 241-242:379-386
Ma X M, Geisler-Lee J, Geiser-Lee J, et al. Interactions between engineered nanoparticles (ENPs) and plants:Phytotoxicity, uptake and accumulation[J]. Science of the Total Environment, 2010, 408(16):3053-3061
Wang Q, Ebbs S D, Chen Y S, et al. Trans-generational impact of cerium oxide nanoparticles on tomato plants[J]. Metallomics:Integrated Biometal Science, 2013, 5(6):753-759
Rico C M, Hong J, Morales M I, et al. Effect of cerium oxide nanoparticles on rice:A study involving the antioxidant defense system and in vivo fluorescence imaging[J]. Environmental Science & Technology, 2013, 47(11):5635-5642
Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms[J]. Toxicological Sciences, 2011, 119(1):135-145
Thill A, Zeyons O, Spalla O, et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism[J]. Environmental Science & Technology, 2006, 40(19):6151-6156
Zeyons O, Thill A, Chauvat F, et al. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis[J]. Nanotoxicology, 2009, 3(4):284-295
Pereira M M, Mouton L, Yéprémian C, et al. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris[J]. Journal of Nanobiotechnology, 2014, 12:15
van Hoecke K, Quik J T, Mankiewicz-Boczek J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12):4537-4546
Rogers N J, Franklin N M, Apte S C, et al. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater[J]. Environmental Chemistry, 2010, 7(1):50-60
Lee S W, Kim S M, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure[J]. Environmental Toxicology and Pharmacology, 2009, 28(1):86-91
Gaiser B K, Biswas A, Rosenkranz P, et al. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna[J]. Journal of Environmental Monitoring, 2011, 13(5):1227-1235
Gaiser B K, Fernandes T F, Jepson M A, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles[J]. Environmental Toxicology and Chemistry, 2012, 31(1):144-154
Johnston B D, Scown T M, Moger J, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish[J]. Environmental Science & Technology, 2010, 44(3):1144-1151
Auffan M, Bertin D, Chaurand P, et al. Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex[J]. Water Research, 2013, 47(12):3921-3930
Artells E, Issartel J, Auffan M, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species[J]. PLoS One, 2013, 8(8):e71260
Pelletier D A, Suresh A K, Holton G A, et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability[J]. Applied and Environmental Microbiology, 2010, 76(24):7981-7989
Zhang H F, He X, Zhang Z Y, et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations[J]. Environmental Science & Technology, 2011, 45(8):3725-3730
Conway J R, Hanna S K, Lenihan H S, et al. Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel[J]. Environmental Science & Technology, 2014, 48(3):1517-1524
Dinesh R, Anandaraj M, Srinivasan V, et al. Engineered nanoparticles in the soil and their potential implications to microbial activity[J]. Geoderma, 2012, 173-174:19-27
Vittori Antisari L, Carbone S, Gatti A, et al. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil[J]. Soil Biology and Biochemistry, 2013, 60:87-94
Arnold M C, Badireddy A R, Wiesner M R, et al. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans[J]. Archives of Environmental Contamination and Toxicology, 2013, 65(2):224-233
Collin B, Oostveen E, Tsyusko O V, et al. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(2):1280-1289
Lahive E, Jurkschat K, Shaw B J, et al. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida:Subtle effects[J]. Environmental Chemistry, 2014, 11(3):268-278
Roh J Y, Park Y K, Park K, et al. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints[J]. Environmental Toxicology and Pharmacology, 2010, 29(2):167-172
谢昌健. 纳米二氧化铈在"纳米-生物"表界面的解离与毒性机制研究[D]. 北京:中国科学院大学, 2019:25 Xie C J. Study on the dissociation and toxicity mechanism of nano-cerium dioxide at the "nano-biological" surface interface[D]. Beijing:University of Chinese Academy of Sciences, 2019:25(in Chinese)
Li Y, Zhang W, Niu J F, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012, 6(6):5164-5173
Wang P F, You G X, Hou J, et al. Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure:Structural, physicochemical and microbial properties and potential mechanism[J]. Water Research, 2018, 133:208-217
von Moos N, Slaveykova V I. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-State of the art and knowledge gaps[J]. Nanotoxicology, 2014, 8(6):605-630
Preda G, Migani A, Neyman K M, et al. Formation of superoxide anions on ceria nanoparticles by interaction of molecular oxygen with Ce3+ sites[J]. The Journal of Physical Chemistry C, 2011, 115(13):5817-5822
Heckert E G, Seal S, Self W T. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium[J]. Environmental Science & Technology, 2008, 42(13):5014-5019
Zhao X C, Yu M, Xu D, et al. Distribution, bioaccumulation, trophic transfer, and influences of CeO2 nanoparticles in a constructed aquatic food web[J]. Environmental Science & Technology, 2017, 51(9):5205-5214
Dogra Y, Arkill K P, Elgy C, et al. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator[J]. Nanotoxicology, 2016, 10(4):480-487
Dunnick K M, Pillai R, Pisane K L, et al. The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity[J]. Biological Trace Element Research, 2015, 166(1):96-107
Xu Y, Wang C, Hou J, et al. Strategies and relative mechanisms to attenuate the bioaccumulation and biotoxicity of ceria nanoparticles in wastewater biofilms[J]. Bioresource Technology, 2018, 265:102-109
李媛媛. 纳米二氧化铈的获得性自由基清除能力:机制与启示[D]. 北京:中国科学院大学, 2015:56
Brunet L, Lyon D Y, Hotze E M, et al. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43(12):4355-4360
Li R B, Ji Z X, Chang C H, et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design[J]. ACS Nano, 2014, 8(2):1771-1783
Kuchma M H, Komanski C B, Colon J, et al. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2010, 6(6):738-744
Rollin-Genetet F, Seidel C, Artells E, et al. Redox reactivity of cerium oxide nanoparticles induces the formation of disulfide bridges in thiol-containing biomolecules[J]. Chemical Research in Toxicology, 2015, 28(12):2304-2312
Han G C, Peng Y, Hao Y Q, et al. Spectrofluorimetric determination of total free thiols based on formation of complexes of Ce(Ⅲ) with disulfide bonds[J]. Analytica Chimica Acta, 2010, 659(1-2):238-242
Arai Y, Dahle J T. Redox-ligand complexation controlled chemical fate of ceria nanoparticles in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26):6646-6653
Plakhova T V, Romanchuk A Y, Yakunin S N, et al. Solubility of nanocrystalline cerium dioxide:Experimental data and thermodynamic modeling[J]. The Journal of Physical Chemistry C, 2016, 120(39):22615-22626
Horie M, Nishio K, Kato H, et al. Cellular responses induced by cerium oxide nanoparticles:Induction of intracellular calcium level and oxidative stress on culture cells[J]. Journal of Biochemistry, 2011, 150(4):461-471

相关话题/纳米 生态 环境 生物 细胞