1长春师范大学心理学系, 长春 130032
2苏州科技大学心理学系, 苏州 215009
3苏州大学心理学系
4苏州大学心理与行为科学研究中心, 苏州 215123
收稿日期:
2020-03-05出版日期:
2021-02-25发布日期:
2020-12-29通讯作者:
王慧媛,张明E-mail:wanghuiyuan@ccsfu.edu.cn;psyzm@suda.edu.cn基金资助:
国家自然科学基金(31871092);吉林省教育厅“十三五”社会科学项目(JJKH20181210SK);长春师范大学人文社会科学基金项目(长师大社科合字[2017] 001号);教育部人文社会科学研究项目(20YJC190002);江苏省社会科学基金项目(20JYC008)Meaningful contingent attentional orienting effects: Spatial location-based inhibition and capture
WANG Hui-Yuan1(), CHEN Ai-Rui2, ZHANG Ming3,4()1Department of Psychology, Changchun Normal University, Changchun 130032, China
2Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
3Department of Psychology, Soochow University, Suzhou 215123, China
4Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
Received:
2020-03-05Online:
2021-02-25Published:
2020-12-29Contact:
WANG Hui-Yuan,ZHANG Ming E-mail:wanghuiyuan@ccsfu.edu.cn;psyzm@suda.edu.cn摘要/Abstract
摘要: 采用线索化范式, 通过3个实验建立线索和靶子的意义关联, 考察了意义性线索在不同空间位置的注意定向效应。结果表明, 在下视野出现抑制效应, 且位置越下抑制效应越显著; 在上视野出现捕获效应, 且位置越上捕获效应越显著; 同时注意定向效应的程度受引导线索性质的影响。这些结果说明:(1)客体间的意义关联能够引导视觉空间注意, 表现出不同空间位置的注意定向效应; (2)客体性质能够影响意义关联的注意定向, 表现为客体的生动性越高, 调节能力越强, 抽象性越高, 调节能力越弱; (3)意义关联的注意定向具有规律性变化, 表现为基于空间位置的抑制和捕获效应。
图/表 10
图1实验1流程图
图1实验1流程图
表1实验1中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义一致性 | 线索位置 | |||
---|---|---|---|---|
上 | 右 | 下 | 左 | |
语义一致 | ||||
线索无效 | 523.76 ± 40.26 92.58 ± 6.94 | 519.42 ± 44.22 92.58 ± 7.63 | 510.76 ± 40.28 93.42 ± 5.20 | 516.21 ± 37.88 93.83 ± 5.97 |
线索有效 | 497.61 ± 35.19 96.50 ± 6.77 | 503.24 ± 43.28 95.50 ± 5.85 | 524.96 ± 50.30 96.25 ± 6.99 | 497.87 ± 44.26 90.75 ± 8.49 |
语义不一致 | ||||
线索无效 | 524.81 ± 35.75 93.33 ± 6.28 | 521.99 ± 35.59 93.25 ± 6.81 | 510.06 ± 32.23 92.75 ± 7.24 | 520.28 ± 33.78 94.67 ± 6.45 |
线索有效 | 496.43 ± 34.03 96.50 ± 7.67 | 503.84 ± 44.52 95.00 ± 5.71 | 518.35 ± 37.04 94.75 ± 5.90 | 504.62 ± 36.53 94.75 ± 5.61 |
表1实验1中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义一致性 | 线索位置 | |||
---|---|---|---|---|
上 | 右 | 下 | 左 | |
语义一致 | ||||
线索无效 | 523.76 ± 40.26 92.58 ± 6.94 | 519.42 ± 44.22 92.58 ± 7.63 | 510.76 ± 40.28 93.42 ± 5.20 | 516.21 ± 37.88 93.83 ± 5.97 |
线索有效 | 497.61 ± 35.19 96.50 ± 6.77 | 503.24 ± 43.28 95.50 ± 5.85 | 524.96 ± 50.30 96.25 ± 6.99 | 497.87 ± 44.26 90.75 ± 8.49 |
语义不一致 | ||||
线索无效 | 524.81 ± 35.75 93.33 ± 6.28 | 521.99 ± 35.59 93.25 ± 6.81 | 510.06 ± 32.23 92.75 ± 7.24 | 520.28 ± 33.78 94.67 ± 6.45 |
线索有效 | 496.43 ± 34.03 96.50 ± 7.67 | 503.84 ± 44.52 95.00 ± 5.71 | 518.35 ± 37.04 94.75 ± 5.90 | 504.62 ± 36.53 94.75 ± 5.61 |
图2实验1中线索有效性和线索位置的交互作用 注:当线索出现在下方位置时, 线索无效时的反应快于线索有效时的反应; 线索出现在其他位置时, 线索无效时的反应不同程度地慢于线索有效时的反应。 *表示p < 0.05, **表示p < 0.01, ***表示p < 0.001, 下同
图2实验1中线索有效性和线索位置的交互作用 注:当线索出现在下方位置时, 线索无效时的反应快于线索有效时的反应; 线索出现在其他位置时, 线索无效时的反应不同程度地慢于线索有效时的反应。 *表示p < 0.05, **表示p < 0.01, ***表示p < 0.001, 下同
图3实验2流程图
图3实验2流程图
表2实验2中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义 一致性 | 线索位置 | |||||
---|---|---|---|---|---|---|
上方 | 右上 | 右下 | 下方 | 左下 | 左上 | |
语义一致 | ||||||
线索无效 | 536.88 ± 42.35 97.95 ± 3.33 | 537.75 ± 44.63 96.59 ± 4.97 | 536.77 ± 45.04 95.45 ± 6.71 | 531.48 ± 36.46 96.82 ± 4.51 | 536.44 ± 40.01 98.86 ± 2.14 | 533.55 ± 42.43 97.05 ± 3.67 |
线索有效 | 519.41 ± 45.78 97.73 ± 7.36 | 519.72 ± 43.55 95.45 ± 12.53 | 545.26 ± 60.33 95.45 ± 9.87 | 545.51 ± 62.54 96.59 ± 11.69 | 550.27 ± 63.40 89.77 ± 14.76 | 536.36 ± 53.61 93.18 ± 11.40 |
语义不一致 | ||||||
线索无效 | 540.97 ± 36.93 96.36 ± 4.92 | 536.90 ± 42.92 96.36 ± 4.68 | 540.14 ± 42.30 96.59 ± 5.21 | 534.26 ± 32.20 96.82 ± 3.95 | 536.42 ± 44.58 97.50 ± 3.36 | 530.14 ± 35.28 97.05 ± 3.67 |
线索有效 | 532.07 ± 53.20 98.96 ± 5.33 | 533.43 ± 46.86 98.86 ± 5.33 | 553.02 ± 53.33 98.86 ± 5.33 | 568.89 ± 55.31 96.59 ± 8.78 | 563.85 ± 62.08 93.18 ± 13.76 | 535.43 ± 66.59 96.59 ± 8.78 |
表2实验2中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义 一致性 | 线索位置 | |||||
---|---|---|---|---|---|---|
上方 | 右上 | 右下 | 下方 | 左下 | 左上 | |
语义一致 | ||||||
线索无效 | 536.88 ± 42.35 97.95 ± 3.33 | 537.75 ± 44.63 96.59 ± 4.97 | 536.77 ± 45.04 95.45 ± 6.71 | 531.48 ± 36.46 96.82 ± 4.51 | 536.44 ± 40.01 98.86 ± 2.14 | 533.55 ± 42.43 97.05 ± 3.67 |
线索有效 | 519.41 ± 45.78 97.73 ± 7.36 | 519.72 ± 43.55 95.45 ± 12.53 | 545.26 ± 60.33 95.45 ± 9.87 | 545.51 ± 62.54 96.59 ± 11.69 | 550.27 ± 63.40 89.77 ± 14.76 | 536.36 ± 53.61 93.18 ± 11.40 |
语义不一致 | ||||||
线索无效 | 540.97 ± 36.93 96.36 ± 4.92 | 536.90 ± 42.92 96.36 ± 4.68 | 540.14 ± 42.30 96.59 ± 5.21 | 534.26 ± 32.20 96.82 ± 3.95 | 536.42 ± 44.58 97.50 ± 3.36 | 530.14 ± 35.28 97.05 ± 3.67 |
线索有效 | 532.07 ± 53.20 98.96 ± 5.33 | 533.43 ± 46.86 98.86 ± 5.33 | 553.02 ± 53.33 98.86 ± 5.33 | 568.89 ± 55.31 96.59 ± 8.78 | 563.85 ± 62.08 93.18 ± 13.76 | 535.43 ± 66.59 96.59 ± 8.78 |
图4实验2中线索有效性和线索位置的交互作用 注:当线索出现在下方和左下位置时, 线索无效时的反应快于线索有效时的反应。线索出现在其他位置时, 线索无效和线索有效时的反应无差异。
图4实验2中线索有效性和线索位置的交互作用 注:当线索出现在下方和左下位置时, 线索无效时的反应快于线索有效时的反应。线索出现在其他位置时, 线索无效和线索有效时的反应无差异。
图5实验3流程图
图5实验3流程图
表3实验3中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义 一致性 | 线索位置 | |||||
---|---|---|---|---|---|---|
上方 | 右上 | 右下 | 下方 | 左下 | 左上 | |
语义一致 | ||||||
线索无效 | 936.77 ± 93.65 92.50 ± 4.89 | 935.36 ± 77.04 91.96 ± 5.89 | 915.47 ± 75.92 93.48 ± 4.69 | 890.01 ± 88.04 92.17 ± 4.79 | 916.90 ± 101.56 93.04 ± 5.22 | 956.92 ± 95.82 94.13 ± 5.36 |
线索有效 | 811.39 ± 187.07 94.02 ± 8.32 | 855.84 ± 194.22 95.65 ± 8.09 | 1017.24 ± 195.81 92.93 ± 9.85 | 1057.90 ± 198.98 96.20 ± 5.88 | 958.87 ± 145.62 89.67 ± 12.30 | 779.27 ± 150.16 94.02 ± 9.88 |
语义不一致 | ||||||
线索无效 | 970.18 ± 85.43 92.17 ± 3.72 | 950.88 ± 89.25 91.41 ± 6.21 | 923.04 ± 82.25 91.41 ± 4.70 | 928.99 ± 97.65 91.09 ± 5.37 | 933.36 ± 83.62 91.41 ± 5.43 | 949.07 ± 79.12 91.20 ± 7.34 |
线索有效 | 865.73 ± 165.24 94.02 ± 9.13 | 861.82 ± 184.36 93.48 ± 9.13 | 1014.82 ± 182.12 91.85 ± 11.06 | 1065.98 ± 158.78 85.87 ± 16.12 | 981.85 ± 165.56 89.67 ± 11.71 | 777.12 ± 173.19 94.02 ± 9.13 |
表3实验3中线索靶子语义一致性、线索有效性和线索位置各条件结合下的平均反应时和正确率(M ± SD)
线索靶子语义 一致性 | 线索位置 | |||||
---|---|---|---|---|---|---|
上方 | 右上 | 右下 | 下方 | 左下 | 左上 | |
语义一致 | ||||||
线索无效 | 936.77 ± 93.65 92.50 ± 4.89 | 935.36 ± 77.04 91.96 ± 5.89 | 915.47 ± 75.92 93.48 ± 4.69 | 890.01 ± 88.04 92.17 ± 4.79 | 916.90 ± 101.56 93.04 ± 5.22 | 956.92 ± 95.82 94.13 ± 5.36 |
线索有效 | 811.39 ± 187.07 94.02 ± 8.32 | 855.84 ± 194.22 95.65 ± 8.09 | 1017.24 ± 195.81 92.93 ± 9.85 | 1057.90 ± 198.98 96.20 ± 5.88 | 958.87 ± 145.62 89.67 ± 12.30 | 779.27 ± 150.16 94.02 ± 9.88 |
语义不一致 | ||||||
线索无效 | 970.18 ± 85.43 92.17 ± 3.72 | 950.88 ± 89.25 91.41 ± 6.21 | 923.04 ± 82.25 91.41 ± 4.70 | 928.99 ± 97.65 91.09 ± 5.37 | 933.36 ± 83.62 91.41 ± 5.43 | 949.07 ± 79.12 91.20 ± 7.34 |
线索有效 | 865.73 ± 165.24 94.02 ± 9.13 | 861.82 ± 184.36 93.48 ± 9.13 | 1014.82 ± 182.12 91.85 ± 11.06 | 1065.98 ± 158.78 85.87 ± 16.12 | 981.85 ± 165.56 89.67 ± 11.71 | 777.12 ± 173.19 94.02 ± 9.13 |
图6实验3中线索有效性和线索位置的交互作用 注:当线索出现在右下和下方位置时, 线索无效时的反应快于线索有效时的反应; 当线索出现在上方、右上和左上位置时, 线索无效时的反应慢于线索有效时的反应; 当线索出现在左下位置时, 线索无效和线索有效时的反应无差异。
图6实验3中线索有效性和线索位置的交互作用 注:当线索出现在右下和下方位置时, 线索无效时的反应快于线索有效时的反应; 当线索出现在上方、右上和左上位置时, 线索无效时的反应慢于线索有效时的反应; 当线索出现在左下位置时, 线索无效和线索有效时的反应无差异。
图7实验1~3中不同线索位置条件下的注意定向效应及趋势线(同一纵坐标效应已平均)
图7实验1~3中不同线索位置条件下的注意定向效应及趋势线(同一纵坐标效应已平均)
参考文献 49
[1] | Bao, Y., Lei, Q., Fang, Y., Tong, Y., Schill, K., P?ppel, E., & Strasburger, H. (2013). Inhibition of return in the visual field: The eccentricity effect is independent of cortical magnification. Experimental Psychology, 60(6), 425-431. doi: 10.1027/1618-3169/a000215URL |
[2] | Bergerbest, D., Shilkrot, O., Joseph, M., & Salti, M. (2017). Right visual-field advantage in the attentional blink: Asymmetry in attentional gating across time and space. Attention Perception & Psychophysics, 79(7), 1979-1992. |
[3] | Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33(3-4), 130-174. doi: 10.1080/02643294.2016.1147426URLpmid: 27310469 |
[4] | Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14(3), 392-422. doi: 10.3758/bf03194082URLpmid: 17874581 |
[5] | Carlei, C., Framorando, D., Burra, N., & Kerzel, D. (2017). Face processing is enhanced in the left and upper visual hemi-fields. Visual Cognition, 25(7-8), 749-761. doi: 10.1080/13506285.2017.1327466URL |
[6] | Chee, M. W. L., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., & Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. Neuroimage, 12(4), 392-403. doi: 10.1006/nimg.2000.0631URLpmid: 10988033 |
[7] | Colegatef, R. L., Hoffman, J. E., & Eriksen, C. W. (1973). Selective encoding from multielement visual displays. Perception & Psychophysics, 14(2), 217-224. |
[8] | Dampuré, J., Ros, C., Rouet, J.-F., & Vibert, N. (2014). Task-dependent sensitisation of perceptual and semantic processing during visual search for words. Journal of Cognitive Psychology, 26(5), 530-549. |
[9] | Eriksen, C. W., & Murphy, T. D. (1987). Movement of attentional focus across the visual field: A critical look at the evidence. Perception & Psychophysics, 42(3), 299-305. doi: 10.3758/bf03203082URLpmid: 3671056 |
[10] | Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi: 10.3758/BF03193146URL |
[11] | Folk, C. L., & Anderson, B. A. (2010). Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings? Psychonomic Bulletin & Review, 17(3), 421-426. doi: 10.3758/PBR.17.3.421URLpmid: 20551369 |
[12] | Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24(3), 847-858. doi: 10.1037//0096-1523.24.3.847URLpmid: 9627420 |
[13] | Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030-1044. URLpmid: 1431742 |
[14] | Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317-329. doi: 10.1037//0096-1523.20.2.317URLpmid: 8189195 |
[15] | Gibson, B. S., & Kelsey, E. M. (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception & Performance, 24(3), 699-706. doi: 10.1037//0096-1523.24.3.699URLpmid: 9627409 |
[16] | Goodhew, S. C., Kendall, W., Ferber, S., & Pratt, J. (2014). Setting semantics: Conceptual set can determine the physical properties that capture attention. Attention, Perception, & Psychophysics, 76(6), 1577-1589. |
[17] | Greene, D. J., Mooshagian, E., Kaplan, J. T., Zaidel, E., & Iacoboni, M. (2009). The neural correlates of social attention: Automatic orienting to social and nonsocial cues. Psychological Research, 73(4), 499-511. doi: 10.1007/s00426-009-0233-3URL |
[18] | Guo, Y. N., You, X. Q., & Li, Y. (2016). The role of stimulus type and semantic category-level attentional set in sustained inattentional blindness: Stimulus type and attentional set in inattentional blindness. Japanese Psychological Research, 58(4), 332-341. doi: 10.1111/jpr.12127URL |
[19] | He, S., Cavanagh, P., & Intriligator, J. (1997). Attentional resolution. Trends in Cognitive Sciences, 1(3), 115-121. doi: 10.1016/S1364-6613(97)89058-4URLpmid: 21223875 |
[20] | Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human Behaviour, 1(10), 743-747. doi: 10.1038/s41562-017-0208-0URLpmid: 31024101 |
[21] | Hollingworth, A., Maxcey-Richard, A. M., & Vecera, S. P. (2012). The spatial distribution of attention within and across objects. Journal of Experimental Psychology: Human Perception & Performance, 38(1), 135-151. doi: 10.1037/a0024463URLpmid: 21728455 |
[22] | Huang, W. Y., Su, Y. L., Zhen, Y. F., & Zhe, Q. (2016). The role of top-down spatial attention in contingent attentional capture. Psychophysiology, 53(5), 650-662. doi: 10.1111/psyp.12615URLpmid: 26879628 |
[23] | Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In J.B. Long and A.D. Baddeley (Eds.) Attention and performance IX: (pp.187-203). Hillsdale, NJ: Erlbaum. |
[24] | Joseph, R. M., Fricker, Z., & Keehn, B. (2015). Activation of frontoparietal attention networks by non-predictive gaze and arrow cues. Social Cognitive and Affective Neuroscience, 10(2), 294-301. doi: 10.1093/scan/nsu054URLpmid: 24748545 |
[25] | Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138-147. doi: 10.1016/s1364-6613(00)01452-2URLpmid: 10740278 |
[26] | Liu, T., Heeger, D. J., & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6(11), 1294-1306. doi: 10.1167/6.11.12URLpmid: 17209736 |
[27] | Lu, J. C., Tian, L. L., Zhang, J. F., Wang, J., Ye, C. X., & Liu, Q. (2017). Strategic inhibition of distractors with visual working memory contents after involuntary attention capture. Scientific Reports, 7(1), 16314. doi: 10.1038/s41598-017-16305-5URLpmid: 29176675 |
[28] | Maxfield, L. (1997). Attention and semantic priming: A review of prime task effects. Consciousness & Cognition, 6(2-3), 204-218. URLpmid: 9262409 |
[29] | Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227-234. URLpmid: 5134329 |
[30] | Palanica, A., & Itier, R. J. (2015). Eye gaze and head orientation modulate the inhibition of return for faces. Attention Perception & Psychophysics, 77(8), 2589-2600. |
[31] | Palanica, A., & Itier, R. J. (2017). Asymmetry in gaze direction discrimination between the upper and lower visual fields. Perception, 46(8), 941-955. URLpmid: 28056652 |
[32] | Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.). Information processing and cognition: The Loyola symposium (pp. 55-85). Hillsdale, NJ: Erlbaum. |
[33] | Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531-556). Hillsdale, NJ: Lawrence Erlbaum. |
[34] | Quek, G. L., & Finkbeiner, M. (2016). The upper-hemifield advantage for masked face processing: Not just an attentional bias. Attention Perception & Psychophysics, 78(1), 52-68. |
[35] | Sato, W., Kochiyama, T., Uono, S., & Yoshikawa, S. (2009). Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols. Neuroimage, 45(3), 984-992. doi: 10.1016/j.neuroimage.2008.12.052URLpmid: 19167506 |
[36] | Schoeberl, T., Fuchs, I., Theeuwes, J., & Ansorge, U. (2015). Stimulus-driven attentional capture by subliminal onset cues. Attention Perception & Psychophysics, 77(3), 737-748. |
[37] | Seidl-Rathkopf, K. N., Turk-Browne, N. B., & Kastner, S. (2015). Automatic guidance of attention during real-world visual search. Attention, Perception, & Psychophysics, 77(6), 1881-1895. |
[38] | Shen, W., Qu, Q. Q., & Li, X. S. (2016). Semantic information mediates visual attention during spoken word recognition in Chinese: Evidence from the printed-word version of the visual-world paradigm. Attention, Perception, & Psychophysics, 78(5), 1267-1284. |
[39] | Sun, S. Z., Shen, J., Shaw, M., Cant, J. S., & Ferber, S. (2015). Automatic capture of attention by conceptually generated working memory templates. Attention Perception & Psychophysics, 77(6), 1841-1847. |
[40] | Thomas, N. A., Castine, B. R., Loetscher, T., & Nicholls, M. E. R. (2015). Upper visual field distractors preferentially bias attention to the left. Cortex, 64, 179-193. doi: 10.1016/j.cortex.2014.10.018URLpmid: 25437374 |
[41] | Wang, B. C., Cao, X. H., Theeuwes, J., Olivers, C. N. L., & Wang, Z. G. (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(2), 226-236. doi: 10.1037/xlm0000295URLpmid: 27399920 |
[42] | Wang, H. Y., Sui, J., & Zhang, M. (2016). The effect of cue-target relevance and search strategies on attentional capture: Evidence from meaning cues. Acta Psychologica Sinica, 48(7), 783-793. |
[ 王慧媛, 隋洁, 张明. (2016). 线索靶子关联和搜索策略对注意捕获的作用——来自意义线索的证据. 心理学报, 48(7), 783-793.] | |
[43] | Wang, H. Y., Sui, J., & Zhang, M. (2018). Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50(10), 1071-1082. |
[ 王慧媛, 隋洁, 张明. (2018). 语义关联的注意捕获——来自线索化范式的证据. 心理学报, 50(10), 1071-1082.] | |
[44] | Wang, H. Y., Zhang, M., & Sui, J. (2014). The effect of cue-target relevance and search strategies on attentional capture. Acta Psychologica Sinica, 46(2), 185-195. |
[ 王慧媛, 张明, 隋洁. (2014). 线索靶子关联和搜索策略对注意捕获的作用. 心理学报, 46(2), 185-195.] | |
[45] | Wurm, L. H., Legge, G. E., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology Human Perception & Performance, 19(4), 899-911. doi: 10.1037//0096-1523.19.4.899URLpmid: 8409865 |
[46] | Wyble, B., Folk, C., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 861-871. doi: 10.1037/a0030517URLpmid: 23163786 |
[47] | Yang, M., Liu, D. W., Cai, A. N., & Zhou, R. L. (2012). Attentional bias of spatial location in viewing scenes: Evidence from eye tracking research. Journal of Psychological Science, 35(2), 258-263. |
[ 杨萌, 刘丹玮, 蔡安妮, 周仁来. (2012). 自由观看实景图片时注意的空间偏向. 心理科学, 35(2), 258-263.] | |
[48] | Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601-621. URLpmid: 6238122 |
[49] | Zhao, S., Li, C. L., Uono, S., Yoshimura, S., & Toichi, M. (2017). Human cortical activity evoked by contextual processing in attentional orienting. Scientific Reports, 7(1), 2962. URLpmid: 28592863 |
相关文章 15
[1] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
[2] | 宋晓蕾, 王丹, 张欣欣, 贾筱倩. 基于客体的一致性效应的产生机制[J]. 心理学报, 2020, 52(6): 669-681. |
[3] | 杨亦松, 林静, 何晓燕, 尹军. 动作理解因境而异: 动作加工中情境信息的自动整合[J]. 心理学报, 2020, 52(6): 682-693. |
[4] | 张环, 侯双, 王海曼, 廉宇煊, 杨海波. 他人在场条件下的社会分享型提取诱发遗忘[J]. 心理学报, 2020, 52(6): 716-729. |
[5] | 郑旭涛,郭文姣,陈满,金佳,尹军. 社会行为的效价信息对注意捕获的影响:基于帮助和阻碍行为的探讨[J]. 心理学报, 2020, 52(5): 584-596. |
[6] | 唐晓雨,孙佳影,彭姓. 双通道分配性注意对视听觉返回抑制的影响[J]. 心理学报, 2020, 52(3): 257-268. |
[7] | 陈洁佳, 周翊, 陈杰. 音乐训练与抑制控制的关系:来自ERPs的证据[J]. 心理学报, 2020, 52(12): 1365-1376. |
[8] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[9] | 孙岩,薄思雨,吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25. |
[10] | 罗禹,念靖晴,鲍未,张静静,赵守盈,潘运,许爽,张禹. 急性应激损害对威胁刺激的注意解除[J]. 心理学报, 2020, 52(1): 26-37. |
[11] | 彭姓,常若松,李奇,王爱君,唐晓雨. 不同SOA下视觉返回抑制对视听觉整合的调节作用[J]. 心理学报, 2019, 51(7): 759-771. |
[12] | 赵怀阳, 江俊, 周临舒, 蒋存梅. 人类镜像系统参与音乐情绪的自动加工:来自EEG的证据[J]. 心理学报, 2019, 51(7): 795-804. |
[13] | 杨群, 张清芳. 汉语图画命名过程的年老化机制:非选择性抑制能力的影响[J]. 心理学报, 2019, 51(10): 1079-1090. |
[14] | 尚俊辰,刘智慧,陈文锋,傅小兰. 美感对西方绘画无意识加工的影响[J]. 心理学报, 2018, 50(7): 693-702. |
[15] | 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响[J]. 心理学报, 2018, 50(6): 647-654. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4872