删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

外显和内隐情绪韵律加工的脑机制:近红外成像研究

本站小编 Free考研考试/2022-01-01

雷震1, 毕蓉2, 莫李澄2, 于文汶2, 张丹丹1,2()
1西南财经大学中国行为经济与行为金融研究中心, 成都 611130
2深圳大学心理学院, 深圳 518060
收稿日期:2020-05-03出版日期:2021-01-25发布日期:2020-11-24
通讯作者:张丹丹E-mail:zhangdd05@gmail.com

基金资助:* 国家自然科学基金(31970980);深圳市基础研究自由探索项目(JCYJ20180305124305294);深港脑科学创新研究院(2019SHIBS0003);教育部人文社会科学研究规划基金项目支持(16XJA790004)

The brain mechanism of explicit and implicit processing of emotional prosodies: An fNIRS study

LEI Zhen1, BI Rong2, MO Licheng2, YU Wenwen2, ZHANG Dandan1,2()
1China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
2College of Psychology, Shenzhen University, Shenzhen 518060, China
Received:2020-05-03Online:2021-01-25Published:2020-11-24
Contact:ZHANG Dandan E-mail:zhangdd05@gmail.com






摘要/Abstract


摘要: 准确识别言语中的情绪韵律信息对社会交往非常重要。本研究采用功能近红外成像技术, 探索外显和内隐情绪加工条件下愤怒、恐惧、快乐三种情绪韵律加工过程中的大脑皮层神经活动。结果表明, 对愤怒、恐惧、快乐韵律进行特异性加工的脑区分别为左侧额极/眶额叶、右侧缘上回、左侧额下回, 其中右侧缘上回脑区同时受到情绪和任务的调控。此外, 右侧颞中回、颞下回和颞极在情绪外显任务中的激活明显强于内隐任务。本研究的结果部分支持了情绪韵律的层次模型, 也对该模型的第三层次, 即“额区对语音情绪信息的精细加工需要外显性情绪加工任务参与”提出了质疑。



图1NIRS通道排布图
图1NIRS通道排布图


表1实验中37个NIRS通道的空间配准信息
通道 发射器-探测器 MNI坐标 Brodmann分区及脑区重合度*
x y z
1 Fp1-Fpz -10 68 -5 10 - Frontopolar area (0.62)
2 Fp1-AF3 -25 66 4 10 - Frontopolar area (1.00)
3
Fp1-AF7
-32
62
-8
10 - Frontopolar area (0.58)
11 - Orbitofrontal area (0.42)
4 AFz-Fpz 3 66 11 10 - Frontopolar area (1.00)
5 AFz-AF3 -12 65 20 10 - Frontopolar area (1.00)
6 AFz-AF4 16 65 20 10 - Frontopolar area (1.00)
7
F5-AF7
-46
48
0
10 - Frontopolar area (0.46)
47 - Inferior prefrontal gyrus (0.34)
8 F5-F7 -52 39 0 47 - Inferior prefrontal gyrus (0.62)
9 F5-FC5 -56 27 16 45 - pars triangularis, part of Broca’s area (0.64)
10 FT7-F7 -57 21 -13 38 - Temporopolar area (0.68)
11 FT7-FC5 -61 8 2 22 - Superior temporal gyrus (0.61)
12 FT7-T7 -66 -7 -14 21 - Middle temporal gyrus (1.00)
13 C5-FC5 -64 -2 24 6 - Pre-motor and supplementary motor cortex (0.67)
14 C5-T7 -68 -17 8 42 - Primary and auditory association cortex (0.51)
15 C5-CP5 -66 -30 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.73)
16 TP7-T7 -69 -31 -9 21 - Middle temporal gyrus (1.00)
17 TP7-CP5 -67 -44 11 22 - Superior temporal gyrus (0.92)
18
TP7-P7
-64
-55
-4
21 - Middle temporal gyrus (0.58)
37 - Fusiform gyrus (0.42)
19 P5-CP5 -60 -56 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.58)
20 P5-P7 -58 -68 13 39 - Angular gyrus, part of Wernicke’s area (0.42)
21 Fp2-Fpz 14 68 -5 10 - Frontopolar area (0.66)
22 Fp2-AF4 28 66 4 10 - Frontopolar area (1.00)
23 Fp2-AF8 35 63 -8 10 - Frontopolar area (0.63)
24 F6-AF8 49 48 1 10 - Frontopolar area (0.45)
25 F6-F8 54 39 1 47 - Inferior prefrontal gyrus (0.56)
26 F6-FC6 58 25 16 45 - pars triangularis, part of Broca’s area (0.69)
27 FT8-F8 59 21 -12 38 - Temporopolar area (0.62)
28 FT8-FC6 63 7 3 22 - Superior temporal gyrus (0.63)
29 FT8-T8 67 -7 -12 21 - Middle temporal gyrus (1.00)
30 C6-FC6 66 -3 24 6 - Pre-motor and supplementary motor cortex (0.66)
31 C6-T8 70 -17 8 42 - Primary and auditory association cortex (0.50)
32 C6-CP6 67 -30 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.78)
33 TP8-T8 70 -30 -9 21 - Middle temporal gyrus (0.98)
34 TP8-CP6 68 -43 11 22 - Superior temporal gyrus (0.92)
35
TP8-P8
64
-54
-4
37 - Fusiform gyrus (0.54)
21 - Middle temporal gyrus (0.46)
36 P6-CP6 61 -56 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.61)
37 P6-P8 57 -67 13 39 - Angular gyrus, part of Wernicke’s area (0.54)

表1实验中37个NIRS通道的空间配准信息
通道 发射器-探测器 MNI坐标 Brodmann分区及脑区重合度*
x y z
1 Fp1-Fpz -10 68 -5 10 - Frontopolar area (0.62)
2 Fp1-AF3 -25 66 4 10 - Frontopolar area (1.00)
3
Fp1-AF7
-32
62
-8
10 - Frontopolar area (0.58)
11 - Orbitofrontal area (0.42)
4 AFz-Fpz 3 66 11 10 - Frontopolar area (1.00)
5 AFz-AF3 -12 65 20 10 - Frontopolar area (1.00)
6 AFz-AF4 16 65 20 10 - Frontopolar area (1.00)
7
F5-AF7
-46
48
0
10 - Frontopolar area (0.46)
47 - Inferior prefrontal gyrus (0.34)
8 F5-F7 -52 39 0 47 - Inferior prefrontal gyrus (0.62)
9 F5-FC5 -56 27 16 45 - pars triangularis, part of Broca’s area (0.64)
10 FT7-F7 -57 21 -13 38 - Temporopolar area (0.68)
11 FT7-FC5 -61 8 2 22 - Superior temporal gyrus (0.61)
12 FT7-T7 -66 -7 -14 21 - Middle temporal gyrus (1.00)
13 C5-FC5 -64 -2 24 6 - Pre-motor and supplementary motor cortex (0.67)
14 C5-T7 -68 -17 8 42 - Primary and auditory association cortex (0.51)
15 C5-CP5 -66 -30 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.73)
16 TP7-T7 -69 -31 -9 21 - Middle temporal gyrus (1.00)
17 TP7-CP5 -67 -44 11 22 - Superior temporal gyrus (0.92)
18
TP7-P7
-64
-55
-4
21 - Middle temporal gyrus (0.58)
37 - Fusiform gyrus (0.42)
19 P5-CP5 -60 -56 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.58)
20 P5-P7 -58 -68 13 39 - Angular gyrus, part of Wernicke’s area (0.42)
21 Fp2-Fpz 14 68 -5 10 - Frontopolar area (0.66)
22 Fp2-AF4 28 66 4 10 - Frontopolar area (1.00)
23 Fp2-AF8 35 63 -8 10 - Frontopolar area (0.63)
24 F6-AF8 49 48 1 10 - Frontopolar area (0.45)
25 F6-F8 54 39 1 47 - Inferior prefrontal gyrus (0.56)
26 F6-FC6 58 25 16 45 - pars triangularis, part of Broca’s area (0.69)
27 FT8-F8 59 21 -12 38 - Temporopolar area (0.62)
28 FT8-FC6 63 7 3 22 - Superior temporal gyrus (0.63)
29 FT8-T8 67 -7 -12 21 - Middle temporal gyrus (1.00)
30 C6-FC6 66 -3 24 6 - Pre-motor and supplementary motor cortex (0.66)
31 C6-T8 70 -17 8 42 - Primary and auditory association cortex (0.50)
32 C6-CP6 67 -30 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.78)
33 TP8-T8 70 -30 -9 21 - Middle temporal gyrus (0.98)
34 TP8-CP6 68 -43 11 22 - Superior temporal gyrus (0.92)
35
TP8-P8
64
-54
-4
37 - Fusiform gyrus (0.54)
21 - Middle temporal gyrus (0.46)
36 P6-CP6 61 -56 28 40 - Supramarginal gyrus, part of Wernicke’s area (0.61)
37 P6-P8 57 -67 13 39 - Angular gyrus, part of Wernicke’s area (0.54)


表2情绪主效应结果
通道 脑区 F p* 愤怒β值 恐惧β值 快乐β值
3 L Frontopolar/orbitofrontal area 12.51 0.001 0.21 ± 0.20 0.12 ± 0.23 0.06 ± 0.20
9 L pars triangularis/Broca’s area 24.24 < 0.001 0.10 ± 0.16 0.10 ± 0.15 0.21 ± 0.15
32 R Supramarginal gyrus 12.48 0.001 0.10 ± 0.56 0.36 ± 0.51 0.11 ± 0.45

表2情绪主效应结果
通道 脑区 F p* 愤怒β值 恐惧β值 快乐β值
3 L Frontopolar/orbitofrontal area 12.51 0.001 0.21 ± 0.20 0.12 ± 0.23 0.06 ± 0.20
9 L pars triangularis/Broca’s area 24.24 < 0.001 0.10 ± 0.16 0.10 ± 0.15 0.21 ± 0.15
32 R Supramarginal gyrus 12.48 0.001 0.10 ± 0.56 0.36 ± 0.51 0.11 ± 0.45



图2不同脑区在情绪和任务条件中的激活(仅显示出现显著效应的通道)。图中的errorbar表示均值的标准误。
图2不同脑区在情绪和任务条件中的激活(仅显示出现显著效应的通道)。图中的errorbar表示均值的标准误。



图3脑区激活的成像图。
图3脑区激活的成像图。


表3任务主效应结果
通道 脑区 F p* 内隐β值 外显β值
27 R Temporopolar area 11.62 0.004 0.04 ± 0.36 0.32 ± 0.42
28 R Superior temporal gyrus 26.17 < 0.001 0.05 ± 0.45 0.37 ± 0.43
29 R Middle temporal gyrus 15.84 0.003 -0.03 ± 0.49 0.34 ± 0.53

表3任务主效应结果
通道 脑区 F p* 内隐β值 外显β值
27 R Temporopolar area 11.62 0.004 0.04 ± 0.36 0.32 ± 0.42
28 R Superior temporal gyrus 26.17 < 0.001 0.05 ± 0.45 0.37 ± 0.43
29 R Middle temporal gyrus 15.84 0.003 -0.03 ± 0.49 0.34 ± 0.53







[1] Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience, 20(7), 2683-2690.
URLpmid: 10729349
[2] Alba-Ferrara, L., Kochen, S., & Hausmann, M. (2018). Emotional prosody processing in epilepsy: Some insights on brain reorganization. Frontiers in Human Neuroscience, 12, 92.
URLpmid: 29593517
[3] Aryani, A., Hsu, C.-T., & Jacobs, A. M. (2018). The sound of words evokes affective brain responses. Brain Sciences, 8(6), 94.
doi: 10.3390/brainsci8060094URL
[4] Bach, D. R., Grandjean, D., Sander, D., Herdener, M., Strik, W. K., & Seifritz, E. (2008). The effect of appraisal level on processing of emotional prosody in meaningless speech. Neuroimage, 42(2), 919-927.
doi: 10.1016/j.neuroimage.2008.05.034URLpmid: 18586524
[5] Beaucousin, V., Zago, L., Herve, P.-Y., Strelnikov, K., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2011). Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension. Brain Research, 1390, 108-117.
URLpmid: 21439268
[6] Belyk, M., & Brown, S. (2014). Perception of affective and linguistic prosody: An ALE meta-analysis of neuroimaging studies. Social Cognitive and Affective Neuroscience, 9(9), 1395-1403.
doi: 10.1093/scan/nst124URLpmid: 23934416
[7] Ben-David, B. M., Multani, N., Shakuf, V., Rudzicz, F., & van Lieshout, P. H. H. M. (2016). Prosody and semantics are separate but not separable channels in the perception of emotional speech: test for rating of emotions in speech. Journal of Speech Language and Hearing Research, 59(1), 72-89.
doi: 10.1044/2015_JSLHR-H-14-0323URL
[8] Beyer, F., Munte, T. F., Gottlich, M., & Kramer, U. M. (2014). Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cerebral Cortex, 25(9), 3057-3063.
URLpmid: 24842782
[9] Brück, C., Kreifelts, B., & Wildgruber, D. (2011). Emotional voices in context: A neurobiological model of multimodal affective information processing. Physics of Life Reviews, 8(4), 383-403.
doi: 10.1016/j.plrev.2011.10.002URLpmid: 22035772
[10] Calvo, M. G., & Nummenmaa, L. (2016). Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 30(6), 1081-1106.
URLpmid: 26212348
[11] Dieler, A. C., Tupak, S. V., & Fallgatter, A. J. (2012). Functional near-infrared spectroscopy for the assessment of speech related tasks. Brain and Language, 121(2), 90-109.
URLpmid: 21507475
[12] Enea, V., & Iancu, S. (2016). Processing emotional body expressions: state-of-the-art. Social Neuroscience, 11(5), 495-506.
URLpmid: 26513592
[13] Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., … Wildgruber, D. (2006). Cerebral pathways in processing of affective prosody: a dynamic causal modeling study. Neuroimage, 30(2), 580-587.
URLpmid: 16275138
[14] Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cerebral Cortex, 22(1), 191-200.
URLpmid: 21625012
[15] Ethofer, T., Kreifelts, B., Wiethoff, S., Wolf, J., Grodd, W., Vuilleumier, P., & Wildgruber, D. (2009b). Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. Journal of Cognitive Neuroscience, 21(7), 1255-1268.
URLpmid: 18752404
[16] Ethofer, T., van de Ville, D., Scherer, K., & Vuilleumier, P. (2009a). Decoding of emotional information in voice- sensitive cortices. Current Biology, 19(12), 1028-1033.
URLpmid: 19446457
[17] Fox, K. C. R., Yih, J., Raccah, O., Pendekanti, S. L., Limbach, L. E., Maydan, D. D., & Parvizi, J. (2018). Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology, 91(16), e1519-e1527.
URLpmid: 30232252
[18] Frühholz, S., Ceravolo, L., & Grandjean, D. (2012). Specific brain networks during explicit and implicit decoding of emotional prosody. Cerebral Cortex, 22(5), 1107-1117.
URLpmid: 21750247
[19] Frühholz, S., & Grandjean, D. (2013a). Multiple subregions in superior temporal cortex are differentially sensitive to vocal expressions: a quantitative meta-analysis. Neuroscience and Biobehavioral Reviews, 37(1), 24-35.
URLpmid: 23153796
[20] Frühholz, S., & Grandjean, D. (2013b). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience and Biobehavioral Reviews, 37(10), 2847-2855.
doi: 10.1016/j.neubiorev.2013.10.007URL
[21] Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., & Vuilleumier, P., & Grandjean, D.(2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1583-1588.
URLpmid: 25605886
[22] Frühholz, S., Trost, W., & Kotz, S. A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 68, 96-110.
URLpmid: 27189782
[23] Goucha, T., & Friederici, A. D. (2015). The language skeleton after dissecting meaning: A functional segregation within Broca’s Area. Neuroimage, 114, 294-302.
URLpmid: 25871627
[24] Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., Ulmer, S., & Siebner, H. R. (2010). Phonological decisions require both the left and right supramarginal gyri. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16494-16499.
URLpmid: 20807747
[25] Hensel, L., Bzdok, D., Müller, V. I., Zilles, K., & Eickhoff, S. B. (2015). Neural correlates of explicit social judgments on vocal stimuli. Cerebral Cortex, 25(5), 1152-1162.
URLpmid: 24243619
[26] Herpertz, S. C., Nagy, K., Ueltzh?ffer, K., Schmitt, R., Mancke, F., Schmahl, C., & Bertsch, K. (2017). Brain mechanisms underlying reactive aggression in borderline personality disorder-sex matters. Biological Psychiatry, 82(4), 257-266.
URLpmid: 28388995
[27] Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience and Biobehavioral Reviews, 55, 498-509.
URLpmid: 26067902
[28] Johnstone, T., van Reekum, C. M., Oakes, T. R., & Davidson, R. J. (2006). The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Social Cognitive and Affective Neuroscience, 1(3), 242-249.
URLpmid: 17607327
[29] Kirby, L. A. J., & Robinson, J. L. (2017). Affective mapping: An activation likelihood estimation (ALE) meta-analysis. Brain and Cognition, 118, 137-148.
doi: 10.1016/j.bandc.2015.04.006URLpmid: 26074298
[30] Knight, M. J., & Baune, B. T. (2019). Social cognitive abilities predict psychosocial dysfunction in major depressive disorder. Depression and Anxiety, 36(1), 54-62.
URLpmid: 30211966
[31] Kotz, S. A., Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J.-D. (2013). Predicting vocal emotion expressions from the human brain. Human Brain Mapping, 34(8), 1971-1981.
URLpmid: 22371367
[32] Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of emotional prosody: an event-related functional MR investigation. Brain and Language, 86(3), 366-376.
URLpmid: 12972367
[33] K?chel, A., Sch?ngassner, F., & Schienle, A. (2013). Cortical activation during auditory elicitation of fear and disgust: a near-infrared spectroscopy (NIRS) study. Neuroscience Letters, 9(549), 197-200.
[34] Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L.,… Fox, P. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120-131.
doi: 10.1002/1097-0193(200007)10:3<120::aid-hbm30>3.0.co;2-8URLpmid: 10912591
[35] Liebenthal, E., Silbersweig, D. A., & Stern, E. (2016). The Language, Tone and prosody of emotions: neural substrates and dynamics of spoken-word emotion perception. Frontiers in Aging Neuroscience, 10, 506.
[36] Lin, Y., Ding, H., & Zhang, Y. (2018). Emotional prosody processing in schizophrenic patients: A selective review and meta-analysis. Journal of Clinical Medicine, 7(10), 363.
[37] Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: a meta- analytic review. Behavioral and Brain Sciences, 35(3), 121-143.
[38] Liu, P., & Pell, M. D. (2012). Recognizing vocal emotions in Mandarin Chinese: a validated database of Chinese vocal emotional stimuli. Behavior Research Methods, 44, 1042-1051.
URLpmid: 22539230
[39] Matsui, T., Nakamura, T., Utsumi, A., Sasaki, A. T., Koike, T., Yoshida, Y., … Sadato, N. (2016). The role of prosody and context in sarcasm comprehension: Behavioral and fMRI evidence. Neuropsychologia, 87, 74-84.
URLpmid: 27157883
[40] Mitchell, R. L. C. (2007). fMRI delineation of working memory for emotional prosody in the brain: commonalities with the lexico-semantic emotion network. Neuroimage, 36(3), 1015-1025.
URLpmid: 17481919
[41] Mitchell, R. L. C., & Xu, Y. (2015). What is the value of embedding artificial emotional prosody in human-computer interactions? Implications for theory and design in psychological science. Frontiers in Psychology, 6, 1750.
URLpmid: 26617563
[42] Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259-270.
URLpmid: 22273765
[43] Mothes-Lasch, M., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2011). Visual attention modulates brain activation to angry voices. Journal of Neuroscience, 31(26), 9594-9598.
URLpmid: 21715624
[44] Patel, S., Oishi, K., Wright, A., Sutherland-Foggio, H., Saxena, S., Sheppard, S. M., & Hillis, A. E. (2018). Right hemisphere regions critical for expression of emotion through prosody. Frontiers in Neurology, 9, 224.
URLpmid: 29681885
[45] Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767-776.
URLpmid: 12441063
[46] Paulmann, S., Seifert, S., & Kotz, S. A. (2010). Orbito-frontal lesions cause impairment during late but not early emotional prosodic processing. Social Neuroscience, 5(1), 59-75.
URLpmid: 19658025
[47] Quadflieg, S., Mohr, A., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2008). Modulation of the neural network involved in the processing of anger prosody: the role of task-relevance and social phobia. Biological Psychology, 78(2), 129-137.
URLpmid: 18353521
[48] Ross, E. D. (1981). The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38(9), 561-569.
URLpmid: 7271534
[49] Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10(1), 24-30.
URLpmid: 16321562
[50] Steber, S., K?nig, N., Stephan, F., & Rossi, S. (2020). Uncovering electrophysiological and vascular signatures of implicit emotional prosody. Scientific Reports, 10(1), 5807.
URLpmid: 32242032
[51] Tong, Y., Hocke, L. M., & Frederick, B. B., (2011). Isolating the sources of widespread physiological fluctuations in functional near-infrared spectroscopy signals. Journal of Biomedical Optics, 16(10), 106005.
URLpmid: 22029352
[52] Witteman, J., van Heuven, V. J., & Schiller, N. O. (2012). Hearing feelings: a quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia, 50(12), 2752-2763.
URLpmid: 22841991
[53] Zhang, D., Chen, Y., Hou, X., & Wu, Y. J. (2019). Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434-2448.
URLpmid: 30697881
[54] Zhang, D., Zhou, Y., Hou, X., Cui, Y., & Zhou, C. (2017). Discrimination of emotional prosodies in human neonates: A pilot fNIRS study. Neuroscience Letters, 658, 62-66.
URLpmid: 28842278
[55] Zhang, D., Zhou, Y., & Yuan, J. (2018). Speech prosodies of different emotional categories activate different brain regions in adult cortex: an fNIRS study. Scientific Reports, 8(1), 218.
URLpmid: 29317758




[1]黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37.
[2]苗晓燕, 孙欣, 匡仪, 汪祚军. 共患难, 更同盟:共同经历相同负性情绪事件促进合作行为[J]. 心理学报, 2021, 53(1): 81-94.
[3]华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056.
[4]李树文, 罗瑾琏. 领导-下属情绪评价能力一致与员工建言:内部人身份感知与性别相似性的作用[J]. 心理学报, 2020, 52(9): 1121-1131.
[5]张琪, 邓娜丽, 姜秀敏, 李卫君. 自我相关性影响情绪词汇加工的时间进程[J]. 心理学报, 2020, 52(8): 946-957.
[6]何晓丽, 袁小龙, 胡铭, 周丽晨. 父母元情绪理念与青少年问题行为:迷走神经的调节作用[J]. 心理学报, 2020, 52(8): 971-981.
[7]张积家, 陆禹同, 张启睿, 张金桥. 外语焦虑、紧张情绪与认知负荷对外语说谎的影响:来自中-英双语者的证据[J]. 心理学报, 2020, 52(7): 861-873.
[8]丁小斌, 王睿, 康铁君, 刘建邑, 周嘉宁. 他人面孔情绪知觉中自我参照与母亲参照的一致性:来自ERP的证据[J]. 心理学报, 2020, 52(6): 694-705.
[9]侯璐璐, 陈莅蓉, 周仁来. 经前期综合征与奖赏进程失调——来自脑电的证据[J]. 心理学报, 2020, 52(6): 742-757.
[10]张丹丹,王驹,赵君,陈淑美,黄琰淋,高秋凤. 抑郁倾向对合作的影响:双人同步近红外脑成像研究[J]. 心理学报, 2020, 52(5): 609-622.
[11]宋晓蕾,贾筱倩,赵媛,郭晶晶. 情绪对联合行动中共同表征能力的影响机制[J]. 心理学报, 2020, 52(3): 269-282.
[12]孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406.
[13]孙岩,薄思雨,吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25.
[14]范伟,任梦梦,肖俊泽,简增郸,杜晓明,傅小兰. 羞耻情绪对欺骗行为的影响:自我控制的作用[J]. 心理学报, 2019, 51(9): 992-1006.
[15]唐日新,李佳佳,王志鹏. 情绪效价、唤醒度和有无评价影响手部动作[J]. 心理学报, 2019, 51(8): 890-902.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4855
相关话题/心理 信息 空间 实验 控制