删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

厌恶与恐惧面孔的记忆编码、保持、提取

本站小编 Free考研考试/2022-01-01

张丹丹, 蔺义芹, 柳昀哲, 罗跃嘉, 蒋冬红*
深圳市情绪与社会认知科学重点实验室(深圳大学), 深圳 518060
收稿日期:2018-01-13出版日期:2019-01-25发布日期:2018-11-26
通讯作者:蒋冬红

基金资助:* 国家自然科学基金(31571120);国家基础研究计划(973项目)(2014CB744600);深圳市基础研究自由探索项目资助(JCYJ20170302143246158)

Memory encoding, retention and retrieval of disgusting and fearful faces

ZHANG Dandan, LIN Yiqin, LIU Yunzhe, LUO Yuejia, JIANG Donghong*
Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen 518060, China
Received:2018-01-13Online:2019-01-25Published:2018-11-26
Contact:JIANG Donghong






摘要/Abstract


摘要: 情绪记忆增强效应在负性情绪记忆研究中被反复证实。尽管厌恶和恐惧同属负性情绪, 提示威胁的存在, 但由于它们的进化意义和生理功能不同, 可能导致它们对记忆的编码、保持、提取三个阶段不同的调节方向或调节强度。本文采用延迟再认任务, 采用事件相关电位考察健康成年被试对唤醒度和效价相当的恐惧和厌恶面孔的记忆编码、保持和提取。结果显示, 1)在记忆编码的早期, 被试主要加强了对恐惧面孔的注意(P1)和结构编码(N170), 而厌恶信息的加工受到了抑制; 2)从记忆编码晚期到记忆保持的整个阶段, 被试对厌恶信息的精细评估(编码阶段P3)和复述保持(保持阶段的负走向慢波)均强于恐惧信息; 3)相比于恐惧面孔, 厌恶面孔可能在工作记忆系统形成了更强的表征, 从而使被试在记忆提取时可回忆起更多的细节, 对记忆提取的信心更足(提取阶段P3)。这后两条发现是导致行为层面上厌恶情绪记忆优于恐惧情绪记忆的原因。本研究为“厌恶比恐惧具有更强的记忆增强效应”提供了高时间分辨率的脑活动层面的证据, 从而进一步揭示了负性情绪增强记忆的认知机制。



图1实验材料呈现示意图
图1实验材料呈现示意图



图2各实验条件下的行为结果。A, 反应时(RT)。B, 辨别力指数(d')。C, 反应偏向(c)。 注:彩图见电子版, 下同
图2各实验条件下的行为结果。A, 反应时(RT)。B, 辨别力指数(d')。C, 反应偏向(c)。 注:彩图见电子版, 下同



图3记忆编码阶段的ERP波形图。A, 枕区P1成分, 波形为O1, O2, PO3, PO4电极点数据的均值。B, 颞枕区N170成分, 波形为PO7, PO8, P7, P8电极点数据的均值。C, 顶区P3成分, 波形为P1, Pz, P2, CP1, CPz, CP2电极点数据的均值。
图3记忆编码阶段的ERP波形图。A, 枕区P1成分, 波形为O1, O2, PO3, PO4电极点数据的均值。B, 颞枕区N170成分, 波形为PO7, PO8, P7, P8电极点数据的均值。C, 顶区P3成分, 波形为P1, Pz, P2, CP1, CPz, CP2电极点数据的均值。



图4记忆保持阶段的ERP波形图。本图显示额区负慢波(NSW), 波形为F1, Fz, F2, FC1, FCz, FC2电极点数据的均值。
图4记忆保持阶段的ERP波形图。本图显示额区负慢波(NSW), 波形为F1, Fz, F2, FC1, FCz, FC2电极点数据的均值。



图5记忆提取阶段的ERP波形图。A, 枕区P1成分, 波形为O1, O2, PO3, PO4电极点数据的均值。B, 颞枕区N170成分, 波形为PO7, PO8, P7, P8电极点数据的均值。C, 顶区P3成分, 波形为P1, Pz, P2, CP1, CPz, CP2电极点数据的均值。
图5记忆提取阶段的ERP波形图。A, 枕区P1成分, 波形为O1, O2, PO3, PO4电极点数据的均值。B, 颞枕区N170成分, 波形为PO7, PO8, P7, P8电极点数据的均值。C, 顶区P3成分, 波形为P1, Pz, P2, CP1, CPz, CP2电极点数据的均值。







[1] Anderson A. K., Christoff K., Panitz D., De Rosa E& Gabrieli J. D. E. ., ( 2003). Neural correlates of the automatic processing of threat facial signals. Journal of Neuroscience, 23( 13), 5627-5633.
doi: 10.1186/1471-2202-4-15URLpmid: 12843265
[2] Bertels J., Kolinsky R., Coucke D., and Morais J . ( 2013). When a bang makes you run away: Spatial avoidance of threatening environmental sounds. Neuroscience Letters, 535, 78-83.
doi: 10.1016/j.neulet.2012.12.058URLpmid: 23328437
[3] BuchananT. T.W . ( 2007). Retrieval of emotional memories. Psychological Bulletin, 133( 5), 761-779.
[4] CacioppoJ. T., & Gardner W.L . ( 1999). Emotion. Annual Review of Psychology, 50, 191-214.
[5] Carretié L., Ruiz-Padial E., López-Martín S., & Albert J . ( 2011). Decomposing unpleasantness: Differential exogenous attention to disgusting and fearful stimuli. Biological Psychology, 86( 3), 247-253.
doi: 10.1016/j.biopsycho.2010.12.005URLpmid: 21184798
[6] Chapman H. A., Johannes K., Poppenk J. L., Moscovitch M., & Anderson A. K . ( 2013). Evidence for the differential salience of disgust and fear in episodic memory. Journal of Experimental Psychology: General, 142( 4), 1100-1112.
doi: 10.1037/a0030503URLpmid: 23067064
[7] Charash M.& McKay D. ,( 2002). Attention bias for disgust. Journal of Anxiety Disorders, 16( 5), 529-541.
[8] Cisler J.M., & Olatunji B.O . ( 2010). Components of attentional biases in contamination fear: Evidence for difficulty in disengagement. Behaviour Research Therapy, 48( 1), 74-78.
doi: 10.1016/j.brat.2009.09.003URLpmid: 2812617
[9] Croucher C. J., Calder A. J., Ramponi C., Barnard P. J., & Murphy F. C . ( 2011). Disgust enhances the recollection of negative emotional images. PLoS ONE, 6( 11), e26571.
[10] Curtis V., de Barra M., & Aunger R . ( 2011). Disgust as an adaptive system for disease avoidance behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 366( 1563), 389-401.
doi: 10.1098/rstb.2010.0117URLpmid: 21199843
[11] Deldin P. J., Deveney C. M., Kim A. S., Casas B. R., & Best J. L . ( 2001). A slow wave investigation of working memory biases in mood disorders. Journal of Abnormal Psychology, 110( 2), 267-281.
doi: 10.1037//0021-843X.110.2.267URLpmid: 11358021
[12] Deveney C.M., & Deldin P.J . ( 2004). Memory of faces: A slow wave ERP study of major depression. Emotion, 4( 3), 295-304.
doi: 10.1037/1528-3542.4.3.295URLpmid: 15456398
[13] Eimer M. ( 2000). Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology, 111( 4), 694-705.
doi: 10.1016/S1388-2457(99)00285-0URLpmid: 10727921
[14] Erk S., Kleczar A., & Walter H . ( 2007). Valence-specific regulation effects in a working memory task with emotional context. Neuroimage, 37( 2), 623-632.
doi: 10.1016/j.neuroimage.2007.05.006URLpmid: 17570686
[15] Finnigan S., Humphreys M. S., Dennis S., & Geffen G . ( 2002). ERP 'old/new' effects: Memory strength and decisional factor (s). Neuropsychologia, 40( 13), 2288-2304.
doi: 10.1016/S0028-3932(02)00113-6URLpmid: 12417459
[16] Galli G., Feurra M., & Viggiano M. P . ( 2006). “Did you see him in the newspaper?” electrophysiological correlates of context and valence in face processing. Brain Research, 1119( 1), 190-202.
doi: 10.1016/j.brainres.2006.08.076URLpmid: 17005161
[17] Gibbons H., Seib-Pfeifer L. E., Koppehele-Gossel J., & Schnuerch R . ( 2018). Affective priming and cognitive load: Event-related potentials suggest an interplay of implicit affect misattribution and strategic inhibition. Psychophysiology, 55( 4), e13009. doi: 10.1111/psyp.13009.[Epub ahead of print]
doi: 10.1111/psyp.13009URLpmid: 28940207
[18] Gl?scher J., Rose M., & Büchel C . ( 2007). Independent effects of emotion and working memory load on visual activation in the lateral occipital complex. Journal of Neuroscience, 27( 16), 4366-4373.
doi: 10.1523/JNEUROSCI.3310-06.2007URLpmid: 17442821
[19] Gong X., Huang Y. X., Wang Y., & Luo Y. J . ( 2011). Revision of the Chinese facial affective picture system. Chinese Mental Health Journal, 25( 1), 40-46.
[ 龚栩, 黄宇霞, 王妍, 罗跃嘉 . ( 2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25( 1), 40-46.]
doi: 10.3969/j.issn.1000-6729.2011.01.011URL
[20] Guhn A., Domschke K., Müller L. D., Dresler T., Eff F., Kopf J., … Herrmann M. J . ( 2015). Neuropeptide S receptor gene variation and neural correlates of cognitive emotion regulation. Social Cognitive and Affective Neuroscience, 10( 12), 1730-1737.
doi: 10.1093/scan/nsv061URLpmid: 25971599
[21] Hauswald A., Schulz H., Iordanov T., & Kissler J . ( 2011). ERP dynamics underlying successful directed forgetting of neutral but not negative pictures. Social Cognitive and Affective Neuroscience, 6( 4), 450-459.
doi: 10.1093/scan/nsq061URLpmid: 3150854
[22] Hillyard S.A., & Anllo-Vento L. , ( 1998). Event-related brain potentials in the study of visual selective attention. Proceedings of The National Academy of Sciences U S A, 95( 3), 781-787.
doi: 10.1073/pnas.95.3.781URLpmid: 9448241
[23] Ito T. A., Larsen J. T., Smith N. K., & Cacioppo J. T . ( 1998). Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75( 4), 887-900.
doi: 10.1037/0022-3514.75.4.887URLpmid: 9825526
[24] Kensinger E.A . ( 2007). Negative emotion enhances memory accuracy: Behavioral and neuroimaging evidence. Current Directions in Psychological Science, 16( 4), 213-218.
doi: 10.1111/j.1467-8721.2007.00506.xURL
[25] Krusemark E.A., &Li W., ( 2013). From early sensory specialization to later perceptual generalization: Dynamic temporal progression in perceiving individual threats. The Journal of Neuroscience, 33( 2), 587-594.
doi: 10.1523/JNEUROSCI.1379-12.2013URLpmid: 23303938
[26] LaBar K.S . ( 2007). Beyond fear: Emotional memory mechanisms in the human brain. Current Directions in Psychological Science, 16( 4), 173-177.
doi: 10.1111/j.1467-8721.2007.00498.xURLpmid: 18604284
[27] LaBar K.S., &Cabeza R., ( 2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7( 1), 54-64.
doi: 10.1038/nrn1825URLpmid: 16371950
[28] Langeslag S. J., Morgan H. M., Jackson M. C., Linden D. E. J.,& Van Strien J. W. ( 2009). Electrophysiological correlates of improved short-term memory for emotional faces. Neuropsychologia, 47( 3), 887-896.
doi: 10.1016/j.neuropsychologia.2008.12.024URLpmid: 19159638
[29] Li X. B., Chan R. C. K., & Luo Y. J . ( 2010). Stage effects of negative emotion on spatial and verbal working memory. BMC Neuroscience, 11, 60.
doi: 10.1186/1471-2202-11-60URLpmid: 20459640
[30] Liu Y. Z., Zhang D. D., & Luo Y. J ( 2015). How disgust facilitates avoidance: An ERP study on attention modulation by threats. Social Cognitive and Affective Neuroscience, 10( 4), 598-604.
doi: 10.1093/scan/nsu094URLpmid: 24974395
[31] L?w A., Rockstroh B., Cohen R., Hauk O., Berg P., & Maier W . ( 1999). Determining working memory from ERP topography. Brain Topography, 12( 1), 39-47.
doi: 10.1023/A:1022229623355URLpmid: 10582564
[32] MacNamara A.& Proudfit GH. ,( 2014). Cognitive load and emotional processing in generalized anxiety disorder: Electrocortical evidence for increased distractibility. Journal of Abnormal Psychology, 123( 3), 557-565.
doi: 10.1037/a0036997URLpmid: 24933276
[33] MacNamara A., Ferri J., & Hajcak G . ( 2011). Working memory load reduces the late positive potential and this effect is attenuated with increasing anxiety. Cognitive, Affective, & Behavioral Neuroscience, 11( 3), 321-331.
doi: 10.3758/s13415-011-0036-zURLpmid: 21556695
[34] Marchewka A., Wypych M., Micha?owski J. M., Sińczuk M., Wordecha M., Jednoróg K., & Nowicka A . ( 2016). What is the effect of basic emotions on directed forgetting? Investigating the role of basic emotions in memory. Frontiers in Human Neuroscience, 10, 378.
doi: 10.3389/fnhum.2016.00378URLpmid: 4976095
[35] Morgan H. M., Klein C., Boehm S. G., Shapiro K. L& Linden D. E. J. .,( 2008). Working memory load for faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience, 20( 6), 989-1002.
doi: 10.1162/jocn.2008.20072URLpmid: 18211245
[36] Mueller S. C., Cromheeke S., Siugzdaite R., Nicolas Boehler C . ( 2017). Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults. Developmental Cognitive Neuroscience, 26, 91-100.
doi: 10.1016/j.dcn.2017.06.004URLpmid: 28688343
[37] Neuberg S. L., Kenrick D. T., & Schaller M . ( 2011). Human threat management systems: Self-protection and disease avoidance. Neuroscience and Biobehavioral Reviews, 35( 4), 1042-1051.
doi: 10.1016/j.neubiorev.2010.08.011URLpmid: 20833199
[38] Olofsson J. K., Nordin S., Sequeira H., & Polich J . ( 2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77( 3), 247-265.
[39] Paller K. A., Kutas M., & McIsaac H. K . ( 1995). Monitoring conscious recollection via the electrical activity of the brain. Psychological Science, 6( 2), 107-111.
doi: 10.1111/j.1467-9280.1995.tb00315.xURL
[40] Patel N., Vytal K., Pavletic N., Stoodley C., Pine D. S., Grillon C., & Ernst M . ( 2016). Interaction of threat and verbal working memory in adolescents. Psychophysiology, 53( 4), 518-526.
doi: 10.1111/psyp.12582URLpmid: 26589772
[41] Ruchkin D. S., Johnson Jr, R.., Grafman J.., Canoune H., & Ritter W . ( 1992). Distinctions and similarities among working memory processes: An event-related potential study. Cognitive Brain Research, 1( 1), 53-66.
doi: 10.1016/0926-6410(92)90005-CURLpmid: 15497435
[42] Rugg M.D., &Curran T., ( 2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences,11( 6), 251-257.
doi: 10.1016/j.tics.2007.04.004URLpmid: 17481940
[43] R?m? P., Paavilainen L., Anourova I., Alho K., Reinikainen K., Sipil? S., & Carlson S . ( 2000). Modulation of slow brain potentials by working memory load in spatial and nonspatial auditory tasks. Neuropsychologia, 38( 7), 913-922.
doi: 10.1016/S0028-3932(00)00019-1URLpmid: 10775702
[44] Rugg M. D., Mark R. E., Walla P., Schloerscheidt A. M., Birch C. S., & Allan K . ( 1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392( 6676), 595-598.
doi: 10.1038/33396URLpmid: 9560154
[45] Righi S., Marzi T., Toscani M., Baldassi S., Ottonello S., & Viggiano M. P . ( 2012). Fearful expressions enhance recognition memory: Electrophysiological evidence. Acta Psychologica, 139( 1), 7-18.
doi: 10.1016/j.actpsy.2011.09.015URLpmid: 22036588
[46] Santos I. M., Iglesias J., Olivares E. I., & Young A. W . ( 2008). Differential effects of object-based attention on evoked potentials to fearful and disgusted faces. Neuropsychologia, 46( 5), 1468-1479.
doi: 10.1016/j.neuropsychologia.2007.12.024URLpmid: 18295286
[47] Schupp H. T., Stockburger J., Codispoti M., Jungh?fer M., Weike A. I., & Hamm A. O . ( 2007). Selective visual attention to emotion. Journal of Neuroscience, 27( 5), 1082-1089.
doi: 10.1523/JNEUROSCI.3223-06.2007URLpmid: 17267562
[48] Sharot T., & Phelps E.A . ( 2004). How arousal modulates memory: Disentangling the effects of attention and retention. Cognitive, Affective and Behavioral Neuroscience, 4( 3), 294-306.
[49] Shestyuk A. Y., Deldin P. J., Brand J. E., & Deveney C. M . ( 2005). Reduced sustained brain activity during processing of positive emotional stimuli in major depression. Biological Psychiatry, 57( 10), 1089-1096.
doi: 10.1016/j.biopsych.2005.02.013URLpmid: 15866547
[50] van Hooff J. C., Devue C., Vieweg P. E., & Theeuwes J . ( 2013). Disgust- and not fear-evoking images hold our attention. Acta Psychologica, 143( 1), 1-6.
doi: 10.1016/j.actpsy.2013.02.001URLpmid: 23500108
[51] Wang L., Gui P., Li L., Ku Y., Bodner M., Fan G., … Dong X . ( 2016). Neural correlates of heat-evoked pain memory in humans. Journal of Neurophysiology, 115( 3), 1596-1604.
doi: 10.1152/jn.00126.2015URLpmid: 26740529
[52] Weymar M., L?w A., Melzig C. A., & Hamm A. O . ( 2009). Enhanced long-term recollection for emotional pictures: Evidence from high-density ERPs. Psychophysiology, 46( 6), 1200-1207.
doi: 10.1111/j.1469-8986.2009.00869.xURLpmid: 19674397
[53] Wilding E.L., & Rugg M.D . ( 1996). An event-related potential study of recognition memory with and without retrieval of source. Brain, 119( 3), 889-905.
doi: 10.1093/brain/119.3.889URLpmid: 8673500
[54] Xie H., Jiang D. H., & Zhang D. D . ( 2018). Individuals with depressive tendencies experience difficulty in forgetting negative material: Two mechanisms revealed by ERP data in the directed forgetting paradigm. Scientific Reports, 8( 1), 1113.
doi: 10.1038/s41598-018-19570-0URLpmid: 29348422
[55] Yang W. J., Liu P. D., Xiao X., Li X. P., Zeng C., Qiu J., & Zhang Q. L . ( 2012). Different neural substrates underlying directed forgetting for negative and neutral images: An event-related potential study. Brain Research, 1441, 53-63.
doi: 10.1016/j.brainres.2011.10.042URLpmid: 22285435
[56] You Y.Q., &Li W., ( 2016). Parallel processing of general and specific threat during early stages of perception. Social Cognitive and Affective Neuroscience, 11( 3), 395-404.
doi: 10.1093/scan/nsv123URLpmid: 4769625
[57] Zhang D. D., Liu Y. Z., Wang L. L., Ai H., & Luo Y. J . ( 2017). Mechanisms for attentional modulation by threatening emotions of fear, anger, and disgust. Cognitive, Affective, and Behavioral Neuroscience, 17( 1), 198-210.
doi: 10.3758/s13415-016-0473-9URLpmid: 27761806
[58] Zhang D. D., He W. Q., Wang T., Luo W. B., Zhu X. G., Gu R. L., Li H., & Luo Y. J . ( 2014). Three stages of emotional word processing: An ERP study with rapid serial visual presentation. Social Cognitive and Affective Neuroscience, 9( 12), 1897-1903.
doi: 10.1093/scan/nst188URLpmid: 4249467
[59] Zhang D. D., Xie H., Liu Y. Z., & Luo Y. J . ( 2016). Neural correlates underlying impaired memory facilitation and suppression of negative material in depression. Scientific Reports, 6, 37556.
doi: 10.1038/srep37556URLpmid: 5114610
[60] Zhang D. D., Luo W. B., & Luo Y. J . ( 2013). Single-trial ERP analysis reveals facial expression category in a three- stage scheme. Brain Research, 1512, 78-88.
doi: 10.1016/j.brainres.2013.03.044URLpmid: 23566819
[61] Zimmer U., Keppel M. T., Poglitsch C., & Ischebeck A . ( 2015). ERP evidence for spatial attention being directed away from disgusting locations. Psychophysiology, 52( 10), 1317-27.
doi: 10.1111/psyp.12463URLpmid: 26085080
[62] Zipf G. K. ( 1949). Human Behavior and The Principle of Least Effort. London, UK, Addison-Wesley Press.




[1]宋锡妍, 程亚华, 谢周秀甜, 龚楠焰, 刘雷. 愤怒情绪对延迟折扣的影响:确定感和控制感的中介作用[J]. 心理学报, 2021, 53(5): 456-468.
[2]侯娟, 朱英格, 方晓义. 手机成瘾与抑郁:社交焦虑和负性情绪信息注意偏向的多重中介作用[J]. 心理学报, 2021, 53(4): 362-373.
[3]刘宇平, 李姗珊, 何赟, 王豆豆, 杨波. 消除威胁或无能狂怒?自恋对暴力犯攻击的影响机制[J]. 心理学报, 2021, 53(3): 244-258.
[4]苗晓燕, 孙欣, 匡仪, 汪祚军. 共患难, 更同盟:共同经历相同负性情绪事件促进合作行为[J]. 心理学报, 2021, 53(1): 81-94.
[5]张银玲, 虞祯, 买晓琴. 社会价值取向对自我-他人风险决策的影响及其机制[J]. 心理学报, 2020, 52(7): 895-908.
[6]宋晓蕾, 王丹, 张欣欣, 贾筱倩. 基于客体的一致性效应的产生机制[J]. 心理学报, 2020, 52(6): 669-681.
[7]黄晏清, 孟迎芳. 目标探测对记忆提取的影响[J]. 心理学报, 2020, 52(6): 706-715.
[8]张清芳, 王雪娇. 汉语口语词汇产生的音韵编码单元:内隐启动范式的ERP研究[J]. 心理学报, 2020, 52(4): 414-425.
[9]宋晓蕾, 贾筱倩, 赵媛, 郭晶晶. 情绪对联合行动中共同表征能力的影响机制[J]. 心理学报, 2020, 52(3): 269-282.
[10]贺晓玲, 陈俊. 3~5岁幼儿权力概念多重隐喻的认知发展[J]. 心理学报, 2020, 52(2): 149-161.
[11]辛昕, 兰天一, 张清芳. 英汉双语者二语口语产生中音韵编码过程的同化机制[J]. 心理学报, 2020, 52(12): 1377-1392.
[12]赵文博, 姜英杰, 王志伟, 胡竞元. 编码强度对字体大小效应的影响[J]. 心理学报, 2020, 52(10): 1156-1167.
[13]耿晓伟,房津如,韩彦芳,李中权,赵蜜,杨烨. 道德相对主义和厌恶情绪对道德直觉判断的影响[J]. 心理学报, 2019, 51(4): 517-526.
[14]房俨然,魏薇,罗萍,刘晓东,施俊琦,战宇杰. 员工负性情绪对情绪劳动策略的影响[J]. 心理学报, 2019, 51(3): 353-365.
[15]张丹丹,刘珍莉,陈钰,买晓琴. 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用:一项tDCS研究[J]. 心理学报, 2019, 51(2): 207-2015.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4358
相关话题/数据 心理 实验 信息 社会