删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

人类嗓音加工的神经机制——来自正常视力者和盲人的脑神经证据

本站小编 Free考研考试/2022-01-01

明莉莉1,2, 胡学平1,2,3()
1江苏师范大学语言科学与艺术学院
2江苏省语言与认知神经科学重点实验室, 语言能力协同创新中心, 徐州 221009
3南京师范大学文学院, 南京210097
收稿日期:2021-02-23发布日期:2021-10-26
通讯作者:胡学平E-mail:huxpxp@163.com

基金资助:国家自然科学基金青年科学基金项目(31900750);中国博士后科学基金资助项目(2020M671530);江苏师范大学自然科学研究基金项目博士学位教师科研支持项目(18XLRX011);江苏师范大学校级科研与实践创新项目等资金资助。(2020XKT851)

The neural mechanisms for human voice processing: Neural evidence from sighted and blind subjects

MING Lili1,2, HU Xueping1,2,3()
1School of Linguistic Science and Art, Jiangsu Normal University, Xuzhou 221000, China
2Key Laboratory of Language and Cognitive Neuroscience of Jiangsu Province, Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
3School of Chinese Language and Culture, Nanjing Normal University, Nanjing 210097, China
Received:2021-02-23Published:2021-10-26
Contact:HU Xueping E-mail:huxpxp@163.com






摘要/Abstract


摘要: 人类嗓音作为听觉环境的重要组成部分, 包含了大量副语言信息以帮助识别个体身份, 尤其对于盲人而言, 视觉面孔经验的缺乏使得嗓音信息成为其感知对方个体特征的主要来源。通过结合正常视力者和盲人在嗓音选择性加工和嗓音身份加工方面的研究, 尝试揭示普遍的人类嗓音加工模式以及盲人特异的嗓音加工机制。此外, 与视觉面孔加工相关的梭状回脑区也参与并卷入了两类人群的嗓音加工任务, 以此为基础梳理的视听整合模型和基于去掩蔽效应的跨模态重组假说, 为这两类人群嗓音加工神经基础的差异性提供了相应的解释机制, 未来研究希望可以进一步探究盲人的嗓音加工策略, 以及考察左侧颞上沟/回脑区在嗓音加工中的作用。


[1] 李量, 郑英君, 吴超, 黎绢花, 张畅芯, 陆灵犀. (2017). 在鸡尾酒会场景下利用去掩蔽知觉线索提高言语识别的脑网络机制. 心理科学进展, 25 (12), 2099-2110.
[2] Aglieri, V., Cagna, B., Velly, L., Takerkart, S., & Belin, P.(2021). FMRI-based identity classification accuracy in left temporal and frontal regions predicts speaker recognition performance. Scientific Reports, 11(1), Article 489. https://doi.org/10.1038/s41598-020-79922-7
[3] Aglieri, V., Chaminade, T., Takerkart, S., & Belin, P.(2018). Functional connectivity within the voice perception network and its behavioural relevance. Neuroimage, 183, 356-365.
doi: 10.1016/j.neuroimage.2018.08.011URL
[4] Andics, A., McQueen, J. M., Petersson, K. M., Gal, V., Rudas, G., & Vidnyanszky, Z.(2010). Neural mechanisms for voice recognition. Neuroimage, 52(4), 1528-1540.
doi: 10.1016/j.neuroimage.2010.05.048URL
[5] Atilgan, H., Collignon, O., & Hasson, U.(2017). Structural neuroplasticity of the superior temporal plane in early and late blindness. Brain and Language, 170, 71-81.
doi: S0093-934X(16)30266-8pmid: 28426947
[6] Bedny, M., Konkle, T., Pelphrey, K., Saxe, R., & Pascual- Leone, A.(2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20(21), 1900-1906.
doi: 10.1016/j.cub.2010.09.044URL
[7] Behrmann, M., Avidan, G., Gao, F., & Black, S.(2007). Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia. Cerebral Cortex, 17, 2354-23563.
pmid: 17218483
[8] Belin, P., Bestelmeyer, P. E., Latinus, M., & Watson, R.(2011). Understanding voice perception. British Journal of Psychology, 102(4), 711-725.
doi: 10.1111/bjop.2011.102.issue-4URL
[9] Belin, P., Fecteau, S., & Bedard, C.(2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8(3), 129-135.
doi: 10.1016/j.tics.2004.01.008URL
[10] Belin, P., & Grosbras, M. H.(2010). Before speech: Cerebral voice processing in infants. Neuron, 65(6), 733-735.
doi: 10.1016/j.neuron.2010.03.018URL
[11] Belin, P., & Zatorre, R. J.(2003). Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport, 14(16), 2105-2109.
doi: 10.1097/00001756-200311140-00019URL
[12] Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B.(2000). Voice-selective areas in human auditory cortex. Nature, 403(6767), 309-312.
doi: 10.1038/35002078URL
[13] Benetti, S., van Ackeren, M. J., Rabini, G., Zonca, J., Foa, V., Baruffaldi, F., … Collignon, O.(2017). Functional selectivity for face processing in the temporal voice area of early deaf individuals. Proceedings of the National Academy of Sciences, 114(31), E6437-E6446.
[14] Benetti, S., Novello, L., Maffei, C., Rabini, G., Jovicich, J., & Collignon, O.(2018). White matter connectivity between occipital and temporal regions involved in face and voice processing in hearing and early deaf individuals. Neuroimage, 179, 263-274.
doi: 10.1016/j.neuroimage.2018.06.044URL
[15] Bestelmeyer, P. E. G., Belin, P., & Grosbras, M. H.(2011). Right temporal TMS impairs voice detection. Current Biology, 21(20), R838-R839.
[16] Blank, H., Anwander, A., & von Kriegstein, K.(2011). Direct structural connections between voice- and face-recognition areas. Journal of Neuroscience, 31(36), 12906-12915.
doi: 10.1523/JNEUROSCI.2091-11.2011URL
[17] Blank, H., Kiebel, S. J., & von Kriegstein, K.(2015). How the human brain exchanges information across sensory modalities to recognize other people. Human Brain Mapping, 36(1), 324-339.
doi: 10.1002/hbm.22631URL
[18] Blank, H., Wieland, N., & von Kriegstein, K.(2014). Person recognition and the brain: Merging evidence from patients and healthy individuals. Neuroscience & Biobehavioral Review, 47, 717-734.
doi: 10.1016/j.neubiorev.2014.10.022URL
[19] Bonte, M., Hausfeld, L., Scharke, W., Valente, G., & Formisano, E.(2014). Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns. Journal of Neuroscience, 34(13), 4548-4557.
doi: 10.1523/JNEUROSCI.4339-13.2014URL
[20] Braun, A.(2012). Speaker recognition ability of blind and sighted subjects. The International Journal of Speech, Language and the Law, 19(2), 159-187.
[21] Bull, R., Rathborn, H., & Clifford, B. R.(1983). The voice- recognition accuracy of blind listeners. Perception, 12(2), 223-226.
pmid: 6657428
[22] Burton, H., Snyder, A. Z., Conturo, T. E., Akbudak, E., Ollinger, J. M., & Raichle, M. E.(2002). Adaptive changes in early and late blind: A fMRI study of Braille reading. Journal of Neurophysiology, 87(1), 589-607.
pmid: 11784773
[23] Candiotti, A., Zuberbuhler, K., & Lemasson, A.(2013). Voice discrimination in four primates. Behavioural Processes, 99, 67-72.
doi: 10.1016/j.beproc.2013.06.010pmid: 23800631
[24] Collignon, O., Dormal, G., Albouy, G., Vandewalle, G., Voss, P., Phillips, C., & Lepore, F.(2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain, 136(9), 2769-2783.
doi: 10.1093/brain/awt176URL
[25] Collignon, O., Vandewalle, G., Voss, P., Albouy, G., Charbonneau, G., Lassonde, M., & Lepore, F.(2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proceedings of the National Academy of Sciences, 108(11), 4435-4440.
doi: 10.1073/pnas.1013928108URL
[26] Coullon, G. S., Jiang, F., Fine, I., Watkins, K. E., & Bridge, H.(2015). Subcortical functional reorganization due to early blindness. Journal of Neurophysiology, 113(7), 2889- 2899.
doi: 10.1152/jn.01031.2014pmid: 25673746
[27] Dormal, G., Pelland, M., Rezk, M., Yakobov, E., Lepore, F., & Collignon, O.(2018). Functional preference for object sounds and voices in the brain of early blind and sighted individuals. Journal of Cognitive Neuroscience, 30(1), 86-106.
doi: 10.1162/jocn_a_01186URL
[28] Elbert, T., Sterr, A., Rockstroh, B., Pantev, C., Muller, M. M., & Taub, E.(2002). Expansion of the tonotopic area in the auditory cortex of the blind. Journal of Neuroscience, 22(22), 9941-9944.
doi: 10.1523/JNEUROSCI.22-22-09941.2002URL
[29] Erickson, L. C., Rauschecker, J. P., & Turkeltaub, P. E.(2017). Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Structure & Function, 222(1), 267-285.
[30] Fairhall, S. L., Porter, K. B., Bellucci, C., Mazzetti, M., Cipolli, C., & Gobbini, M. I.(2017). Plastic reorganization of neural systems for perception of others in the congenitally blind. Neuroimage, 158, 126-135.
doi: S1053-8119(17)30528-1pmid: 28669909
[31] Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P.(2004). Is voice processing species-specific in human auditory cortex? An fMRI study. Neuroimage, 23(3), 840-848.
doi: 10.1016/j.neuroimage.2004.09.019URL
[32] Focker, J., Best, A., Holig, C., & Roder, B.(2012). The superiority in voice processing of the blind arises from neural plasticity at sensory processing stages. Neuropsychologia, 50(8), 2056-2067.
doi: 10.1016/j.neuropsychologia.2012.05.006URL
[33] Focker, J., Holig, C., Best, A., & Roder, B.(2011). Crossmodal interaction of facial and vocal person identity information: An event-related potential study. Brain Research, 1385, 229-245.
doi: 10.1016/j.brainres.2011.02.021URL
[34] Focker, J., Holig, C., Best, A., & Roder, B.(2015). Neural plasticity of voice processing: Evidence from event-related potentials in late-onset blind and sighted individuals. Restorative Neurology and Neuroscience, 33(1), 15-30.
doi: 10.3233/RNN-140406URL
[35] Gamond, L., Vecchi, T., Ferrari, C., Merabet, L. B., & Cattaneo, Z.(2017). Emotion processing in early blind and sighted individuals. Neuropsychology, 31(5), 516-524.
doi: 10.1037/neu0000360URL
[36] Gougoux, F., Belin, P., Voss, P., Lepore, F., Lassonde, M., & Zatorre, R. J.(2009). Voice perception in blind persons: A functional magnetic resonance imaging study. Neuropsychologia, 47(13), 2967-2974.
doi: 10.1016/j.neuropsychologia.2009.06.027URL
[37] Gudi-Mindermann, H., Rimmele, J. M., Nolte, G., Bruns, P., Engel, A. K., & Roder, B.(2018). Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks. Behavioural Brain Research, 348, 31-41.
doi: S0166-4328(17)31232-9pmid: 29655595
[38] Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L.(1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336-6353.
doi: 10.1523/JNEUROSCI.14-11-06336.1994URL
[39] Hertrich, I., Dietrich, S., & Ackermann, H.(2018). Cortical phase locking to accelerated speech in blind and sighted listeners prior to and after training. Brain and Language, 185, 19-29.
doi: S0093-934X(17)30293-6pmid: 30025355
[40] Holig, C., Focker, J., Best, A., Roder, B., & Buchel, C.(2014a). Brain systems mediating voice identity processing in blind humans. Human Brain Mapping, 35(9), 4607-4619.
doi: 10.1002/hbm.22498URL
[41] Holig, C., Focker, J., Best, A., Roder, B., & Buchel, C.(2014b). Crossmodal plasticity in the fusiform gyrus of late blind individuals during voice recognition. Neuroimage, 103, 374-382.
doi: 10.1016/j.neuroimage.2014.09.050URL
[42] Holig, C., Focker, J., Best, A., Roder, B., & Buchel, C.(2017). Activation in the angular gyrus and in the pSTS is modulated by face primes during voice recognition. Human Brain Mapping, 38(5), 2553-2565.
doi: 10.1002/hbm.v38.5URL
[43] Holmes, E., Domingo, Y., & Johnsrude, I. S.(2018). Familiar voices are more intelligible, even if they are not recognized as familiar. Psychological Science, 29(10), 1575-1583.
doi: 10.1177/0956797618779083pmid: 30096018
[44] Holmes, E., & Johnsrude, I. S.(2021). Speech-evoked brain activity is more robust to competing speech when it is spoken by someone familiar. Neuroimage, 237, Article 118107. https://doi.org/10.1016/j.neuroimage.2021.118107
[45] Hu, X., Wang, X., Gu, Y., Luo, P., Yin, S., Wang, L., ... Chen, A.(2017). Phonological experience modulates voice discrimination: Evidence from functional brain networks analysis. Brain and Language, 173, 67-75.
doi: 10.1016/j.bandl.2017.06.001URL
[46] Huang, Y., Xu, L., Wu, X., & Li, L.(2010). The effect of voice cuing on releasing speech from informational masking disappears in older adults. Ear and Hearing, 31(4), 579-583.
doi: 10.1097/AUD.0b013e3181db6dc2pmid: 20531200
[47] Huber, E., Chang, K., Alvarez, I., Hundle, A., Bridge, H., & Fine, I.(2019). Early blindness shapes cortical representations of auditory frequency within auditory cortex. Journal of Neuroscience, 39(26), 5143-5152.
doi: 10.1523/JNEUROSCI.2896-18.2019URL
[48] Johnson, J. A., & Zatorre, R. J.(2005). Attention to simultaneous unrelated auditory and visual events: Behavioral and neural correlates. Cerebral Cortex, 15(10), 1609-1620.
doi: 10.1093/cercor/bhi039URL
[49] Jonas, J., Jacques, C., Liu-Shuang, J., Brissart, H., Colnat- Coulbois, S., Maillard, L., & Rossion, B.(2016). A face- selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proceedings of the National Academy of Sciences, 113(28), E4088-E4097.
[50] Jonas, J., Rossion, B., Brissart, H., Frismand, S., Jacques, C., Hossu, G., … Maillard, L.(2015). Beyond the core face- processing network: Intracerebral stimulation of a face- selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex, 72, 140-155.
doi: S0010-9452(15)00185-9pmid: 26143305
[51] Kawashima, R., O'Sullivan, B. T., & Roland, P. E.(1995). Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: Closing the "mind's eye". Proceedings of the National Academy of Sciences, 92(13), 5969-5972.
doi: 10.1073/pnas.92.13.5969URL
[52] Klinge, C., Eippert, F., Roder, B., & Buchel, C.(2010). Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. Journal of Neuroscience, 30(38), 12798-12805.
doi: 10.1523/JNEUROSCI.2384-10.2010URL
[53] Koeda, M., Takahashi, H., Yahata, N., Asai, K., Okubo, Y., Tanaka, H.(2006). A functional MRI study: Cerebral laterality for lexical-semantic processing and human voice perception. Amercian Journal of Neuroradiology, 27(7), 1472-1479.
[54] Kupers, R., Fumal, A., de Noordhout, A. M., Gjedde, A., Schoenen, J., & Ptito, M.(2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proceedings of the National Academy of Sciences, 103(35), 13256-13260.
doi: 10.1073/pnas.0602925103URL
[55] Lane, C., Kanjlia, S., Richardson, H., Fulton, A., Omaki, A., & Bedny, M.(2017). Reduced left lateralization of language in congenitally blind individuals. Journal of Neuroscience, 29(1), 65-78.
[56] Latinus, M., Crabbe, F., & Belin, P.(2011). Learning- induced changes in the cerebral processing of voice identity. Cerebral Cortex, 21(12), 2820-2828.
doi: 10.1093/cercor/bhr077URL
[57] Lattner, S., Meyer, M. E., & Friederici, A. D.(2005). Voice perception: Sex, pitch, and the right hemisphere. Human Brain Mapping, 24(1), 11-20.
pmid: 15593269
[58] Laurienti, P. J., Burdette, J. H., Wallace, M. T., Yen, Y. F., Field, A. S., & Stein, B. E.(2002). Deactivation of sensory- specific cortex by cross-modal stimuli. Journal of Neuroscience, 14(3), 420-429.
[59] Laver, J.(1980). The phonetic description of voice quality. Cambridge Eng.; New York: Cambridge University Press.
[60] Lewald, J., & Getzmann, S.(2013). Ventral and dorsal visual pathways support auditory motion processing in the blind: Evidence from electrical neuroimaging. European Journal of Neuroscience, 38(8), 3201-3209.
doi: 10.1111/ejn.12306pmid: 23859484
[61] Loiotile, R. E., Cusack, R., & Bedny, M.(2019). Naturalistic audio-movies and narrative synchronize "visual" cortices across congenitally blind but not sighted individuals. Journal of Neuroscience, 39(45), 8940-8948.
doi: 10.1523/JNEUROSCI.0298-19.2019pmid: 31548238
[62] Maguinness, C., Roswandowitz, C., & von Kriegstein, K.(2018). Understanding the mechanisms of familiar voice- identity recognition in the human brain. Neuropsychologia, 116, 179-193.
doi: S0028-3932(18)30140-4pmid: 29614253
[63] Maguinness, C., von Kriegstein, K.(2021). Visual mechanisms for voice-identity recognition flexibly adjust to auditory noise level. Human Brain Mapping, 42, 3963-3982.
doi: 10.1002/hbm.v42.12URL
[64] Manjunath, N. K., Srinivas, R., Nirmala, K. S., Nagendra, H. R., Kumar, A., & Telles, S.(1998). Shorter latencies of components of middle latency auditory evoked potentials in congenitally blind compared to normal sighted subjects. International Journal of Neuroscience, 95(3-4), 173-181.
[65] Mathias, S. R., & von Kriegstein, K.(2014). How do we recognise who is speaking? Frontiers in bioscience (Scholar edition), 6, 92-109.
pmid: 24389264
[66] Matsuzaki, N., Juhasz, C., & Asano, E.(2012). Oscillatory modulations in human fusiform cortex during motion-induced blindness: Intracranial recording. Clinical Neurophysiology, 123(10), 1925-1930.
doi: 10.1016/j.clinph.2012.02.085pmid: 22503904
[67] Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y. T., … Nestor, P. J.(2010). What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133(11), 3256-3268.
doi: 10.1093/brain/awq272URL
[68] Nakamura, K., Kawashima, R., Sugiura, M., Kato, T., Nakamura, A., Hatano, K., … Kojima, S.(2001). Neural substrates for recognition of familiar voices: A PET study. Neuropsychologia, 39(10), 1047-1054.
pmid: 11440757
[69] Naveen, K. V., Srinivas, R. S., Nirmala, K. S., Nagendra, H. R., & Telles, S.(1997). Middle latency auditory evoked potentials in congenitally blind and normal sighted subjects. International Journal of Neuroscience, 90(1-2), 105-111.
doi: 10.3109/00207459709000621URL
[70] Pang, W., Xing, H., Zhang, L., Shu, H., & Zhang, Y.(2020). Superiority of blind over sighted listeners in voice recognition. The Journal of the Acoustical Society of America, 148(2), EL208-EL213.
[71] Pant, R., Kanjlia, S., & Bedny, M.(2020). A sensitive period in the neural phenotype of language in blind individuals. Developmental Cognitive Neuroscience, 41, Article 100744. https://doi.org/10.1016/j.dcn.2019.100744
[72] Parvizi, J., Jacques, C., Foster, B. L., Witthoft, N., Rangarajan, V., Weiner, K. S., & Grill-Spector, K.(2012). Electrical stimulation of human fusiform face-selective regions distorts face perception. Jounral of Neuroscience, 32(43), 14915-14920.
[73] Pascual-Leone, A., & Hamilton, R.(2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427-445.
pmid: 11702559
[74] Pelland, M., Orban, P., Dansereau, C., Lepore, F., Bellec, P., & Collignon, O.(2017). State-dependent modulation of functional connectivity in early blind individuals. Neuroimage, 147, 532-541.
doi: S1053-8119(16)30778-9pmid: 28011254
[75] Peretz, I., Kolinsky, R., Tramo, M., Labrecque, R., Hublet, C., Demeurisse, G., & Belleville, S.(1994). Functional dissociations following bilateral lesions of auditory cortex. Brain, 117(6), 1283-1301.
doi: 10.1093/brain/117.6.1283URL
[76] Pernet, C. R., McAleer, P., Latinus, M., Gorgolewski, K. J., Charest, I., Bestelmeyer, P. E., … Belin, P.(2015). The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices. Neuroimage, 119, 164-174.
doi: 10.1016/j.neuroimage.2015.06.050pmid: 26116964
[77] Poirier, C., Collignon, O., Scheiber, C., Renier, L., Vanlierde, A., Tranduy, D. … de Volder, A. G.(2006). Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage, 31(1), 279-285.
pmid: 16443376
[78] Ptito, M., Fumal, A., de Noordhout, A. M., Schoenen, J., Gjedde, A.,& Kupers, R..(2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Experimental Brain Research, 184(2), 193-200.
pmid: 17717652
[79] Qin, W., & Yu, C.(2013). Neural pathways conveying novisual information to the visual cortex. Neural Plasticity, 2013, Article 864920. https://doi.org/10.1155/2013/864920
[80] Rama, P., & Courtney, S. M.(2005). Functional topography of working memory for face or voice identity. Neuroimage, 24(1), 224-234.
doi: 10.1016/j.neuroimage.2004.08.024URL
[81] Ratan Murty, N. A., Teng, S., Beeler, D., Mynick, A., Oliva, A., & Kanwisher, N.(2020). Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proceedings of the National Academy of Sciences, 117(37), 23011-23020.
doi: 10.1073/pnas.2004607117URL
[82] Reich, L., Szwed, M., Cohen, L., & Amedi, A.(2011). A ventral visual stream reading center independent of visual experience. Current Biology, 21(5), 363-368.
doi: 10.1016/j.cub.2011.01.040pmid: 21333539
[83] Rimmele, J. M., Gudi-Mindermann, H., Nolte, G., Roder, B., & Engel, A. K.(2019). Working memory training integrates visual cortex into beta-band networks in congenitally blind individuals. Neuroimage, 194, 259-271.
doi: 10.1016/j.neuroimage.2019.03.003URL
[84] Roder, B., Kramer, U. M., & Lange, K.(2007). Congenitally blind humans use different stimulus selection strategies in hearing: An ERP study of spatial and temporal attention. Restorative Neurology and Neuroscience, 25(3-4), 311-322.
[85] Roder, B., Rosler, F., Hennighausen, E., & Nacker, F.(1996). Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Cognitive Brain Research, 4(2), 77-93.
doi: 10.1016/0926-6410(96)00024-9URL
[86] Roder, B., Rosler, F., & Neville, H. J.(1999). Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neuroscience Letters, 264(1-3), 53-56.
doi: 10.1016/S0304-3940(99)00107-XURL
[87] Schall, S., Kiebel, S. J., Maess, B., & von Kriegstein, K.(2013). Early auditory sensory processing of voices is facilitated by visual mechanisms. Neuroimage, 77, 237-245.
doi: 10.1016/j.neuroimage.2013.03.043pmid: 23563227
[88] Schall, S., Kiebel, S. J., Maess, B., & von Kriegstein, K.(2015). Voice identity recognition: Functional division of the right STS and its behavioral relevance. Journal of Neuroscience, 27(2), 280-291.
[89] Schelinski, S., Borowiak, K., & von Kriegstein, K.(2016). Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Social Cognitive and Affective Neuroscience, 11(11), 1812-1822.
pmid: 27369067
[90] Schepers, I. M., Hipp, J. F., Schneider, T. R., Roder, B., & Engel, A. K.(2012). Functionally specific oscillatory activity correlates between visual and auditory cortex in the blind. Brain, 135(3), 922-934.
doi: 10.1093/brain/aws014URL
[91] Schweinberger, S. R.(2001). Human brain potential correlates of voice priming and voice recognition. Neuropsychologia, 39(9), 921-936.
pmid: 11516445
[92] Schweinberger, S. R., Kawahara, H., Simpson, A. P., Skuk, V. G., & Zaske, R.(2014). Speaker perception. Wiley Interdisciplinary Reviews: Cognitive Science, 5(1), 15-25.
doi: 10.1002/wcs.1261pmid: 26304294
[93] Schweinberger, S. R., Walther, C., Zaske, R., & Kovacs, G.(2011). Neural correlates of adaptation to voice identity. British Journal of Psychology, 102(4), 748-764.
doi: 10.1111/j.2044-8295.2011.02048.xpmid: 21988382
[94] Sharda, M., & Singh, N. C.(2012). Auditory perception of natural sound categories--An fMRI study. Neuroscience, 214, 49-58.
doi: 10.1016/j.neuroscience.2012.03.053pmid: 22522473
[95] Scott, S. K.(2019). From speech and talkers to the social world: The neural processing of human spoken language. Science, 366(6461), 58-62.
doi: 10.1126/science.aax0288URL
[96] Stevenage, S. V.(2018). Drawing a distinction between familiar and unfamiliar voice processing: A review of neuropsychological, clinical and empirical findings. Neuropsychologia, 116, 162-178.
doi: S0028-3932(17)30252-Xpmid: 28694095
[97] Topalidis, P., Zinchenko, A., Gadeke, J. C., & Focker, J.(2020). The role of spatial selective attention in the processing of affective prosodies in congenitally blind adults: An ERP study. Brain Research, 1739, Article 146819. https://doi.org/10.1016/j.brainres.2020.146819
[98] van Lancker, D., Cummings, J. L., Kreiman, J., & Dobkin, B. H.(1988). Phonagnosia: A dissociation between familiar and unfamiliar voices. Cortex, 24(2), 195-209.
pmid: 3416603
[99] van Lancker, D., & Kreiman, J.(1987). Voice discrimination and recognition are separate abilities. Neuropsychologia, 25(5), 829-834.
pmid: 3431677
[100] van Lancker, D., Kreiman, J., & Cummings, J.(1989). Voice perception deficits: Neuroanatomical correlates of phonagnosia. Journal of Clinical and Experimental Neuropsychology, 11(5), 665-674.
pmid: 2808656
[101] von Kriegstein, K., Dogan, O., Gruter, M., Giraud, A. L., Kell, C. A., Gruter, T., … Kiebel, S. J.(2008). Simulation of talking faces in the human brain improves auditory speech recognition. Proceedings of the National Academy of Sciences, 105(18), 6747-6752.
doi: 10.1073/pnas.0710826105URL
[102] von Kriegstein, K., Eger, E., Kleinschmidt, A., & Giraud, A. L.(2003). Modulation of neural responses to speech by directing attention to voices or verbal content. Cognitive Brain Research, 17(1), 48-55.
pmid: 12763191
[103] von Kriegstein, K., & Giraud, A. L.(2004). Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage, 22(2), 948-955.
pmid: 15193626
[104] von Kriegstein, K., Kleinschmidt, A., & Giraud, A. L.(2006). Voice recognition and cross-modal responses to familiar speakers' voices in prosopagnosia. Cerebral Cortex, 16(9), 1314-1322.
pmid: 16280461
[105] von Kriegstein, K., Kleinschmidt, A., Sterzer, P., & Giraud, A. L.(2005). Interaction of face and voice areas during speaker recognition. Journal of Neuroscience, 17(3), 367-376.
[106] Voss, P., Gougoux, F., Zatorre, R. J., Lassonde, M., & Lepore, F.(2008). Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. Neuroimage, 40(2), 746-758.
doi: 10.1016/j.neuroimage.2007.12.020URL
[107] Voss, P., Lepore, F., Gougoux, F., & Zatorre, R. J.(2011). Relevance of spectral cues for auditory spatial processing in the occipital cortex of the blind. Frontiers in Psychology, 2, Article 48. https://doi.org/10.3389/fpsyg.2011.00048
[108] Warren, J. D., Scott, S. K., Price, C. J., & Griffiths, T. D.(2006). Human brain mechanisms for the early analysis of voices. Neuroimage, 31(3), 1389-1397.
pmid: 16540351
[109] Watkins, K. E., Shakespeare, T. J., O'Donoghue, M. C., Alexander, I., Ragge, N., Cowey, A., & Bridge, H.(2013). Early auditory processing in area V5/MT+ of the congenitally blind brain. Journal of Neuroscience, 33(46), 18242-18246.
doi: 10.1523/JNEUROSCI.2546-13.2013pmid: 24227733
[110] Wilms, M., Eickhoff, S. B., Specht, K., Amunts, K., Shah, N. J., Malikovic, A., & Fink, G. R.(2005). Human V5/MT+: Comparison of functional and cytoarchitectonic data. Anatomy and Embryology, 210(5-6), 485-495.
[111] Xu, L. J., Li, J. Y., Wu, X. H., & Li, L.(2008). Modulation of the voice-cuing effect on releasing speech from informational masking. Journal of the Acoustical Society of America, 123, 3864.
[112] Yang, Z. G., Chen, J., Huang, Q., Wu, X. H., Wu, Y. H., Schneider, B. A., & Li, L.(2007). The effect of voice cuing on releasing Chinese speech from informational masking. Speech Communication, 49, 292-904.
doi: 10.1016/j.specom.2007.02.007URL
[113] Zaske, R., Awwad Shiekh Hasan, B., & Belin, P.(2017). It doesn't matter what you say: FMRI correlates of voice learning and recognition independent of speech content. Cortex, 94, 100-112.
doi: 10.1016/j.cortex.2017.06.005URL
[114] Zhang, Z. J., Hao, G. F., Shi, J. B., Mou, X. D., Yao, Z. J., & Chen, N.(2008). Investigation of the neural substrates of voice recognition in Chinese schizophrenic patients with auditory verbal hallucinations: an event-related functional MRI study. Acta Psychiatrica Scandinavica, 118(4), 272-280.
doi: 10.1111/j.1600-0447.2008.01243.xpmid: 18759811




[1]齐星亮, 蔡厚德. 镜像等效或守恒及其打破:从行为到认知神经机制的研究证据[J]. 心理科学进展, 2021, 29(10): 1855-1865.
[2]张凯莉, 周霈, 王沛. 面孔表情及注视方向对面孔加工特异性的影响——基于知觉负荷理论的视角 *[J]. 心理科学进展, 2018, 26(6): 984-993.
[3]荆伟, 刘仔琴. 孤独症者面孔加工中眼部注视不足, 是回避还是忽视?[J]. 心理科学进展, 2018, 26(3): 476-487.
[4]王昊, 杨志刚. 面孔空想性错视及其神经机制[J]. 心理科学进展, 2018, 26(11): 1952-1960.
[5]郝艳斌, 王福兴, 谢和平, 安婧, 王玉鑫, 刘华山. 自闭症谱系障碍者的面孔加工特点——眼动研究的元分析[J]. 心理科学进展, 2018, 26(1): 26-41.
[6]孙丹;张烨. 双侧梭状回面孔区在面孔加工中的功能分工与协作[J]. 心理科学进展, 2016, 24(4): 510-516.
[7]王小娟;舒华;杨剑峰. 大脑视觉词形区及其在阅读神经网络中的作用[J]. 心理科学进展, 2010, 18(8): 1199-1207.
[8]王丽娟;罗红格;姚雪. 自闭症谱系障碍者面孔识别的神经机制[J]. 心理科学进展, 2009, 17(6): 1177-1184.
[9]程大志;隋光远;陈春萍. 联觉的认知神经机制[J]. 心理科学进展, 2009, 17(5): 944-950.
[10]李晓白;朱棋;刘嘉. 行为遗传学:解决面孔特异性问题争论的新思[J]. 心理科学进展, 2009, 17(2): 284-293.
[11]单春雷;李静薇;翁旭初. 视觉词形加工:从脑区到神经通路[J]. 心理科学进展, 2008, 16(3): 441-445.
[12]徐岩,张亚旭,周晓林. 面孔加工的认知神经科学研究:回顾与展望[J]. 心理科学进展, 2003, 11(1): 35-43.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5666
相关话题/科学 心理 神经 语言 视觉