中国科学院心理研究所心理健康重点实验室创伤应激研究实验室, 北京 100101
中国科学院大学心理学系, 北京 100049
收稿日期:
2021-03-30出版日期:
2021-10-15发布日期:
2021-08-23通讯作者:
王力E-mail:wangli1@psych.ac.cn基金资助:
国家自然科学基金项目(31471004);国家自然科学基金项目(31971020);国家社会科学基金重大项目(20ZDA079);中国科学院对外合作重点项目(153111KYSB20160036);中国科学院重点部署项目(ZDRW-XH-2019-4);教育部人文社会科学重点研究基地重大项目(16JJD190006)Psychopathological network theory, methods and challenges
CHEN Chen, WANG Li(), CAO Chengqi, LI GenLaboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2021-03-30Online:
2021-10-15Published:
2021-08-23Contact:
WANG Li E-mail:wangli1@psych.ac.cn摘要/Abstract
摘要: 对于精神障碍这一概念的理解, 传统DSM-ICD分类诊断系统和研究领域标准RDoC均基于潜变量视角, 认为精神障碍的症状由其潜在共同原因所致。这2种观点都忽略了症状间的相互作用。不同于分类和维度视角, Borsboom在2008年对精神障碍的概念化提出了的全新视角——心理病理学网络理论。此理论的核心观点是症状之间的动态因果关系构成了精神障碍。基于心理病理学网络理论的网络分析方法, 主要以结合EBIC的glasso算法估计症状间的偏相关网络, 并通过网络中节点中心性与网络连接性等指标, 来考查精神障碍症状的不同特性。近几年来, 研究者发现心理病理学网络分析方法在对症状间因果关系的推断、核心症状的识别和网络结构的可靠性与可重复性方面仍面临一些挑战。这些挑战为心理病理学网络理论与方法指明了未来可能的发展方向。
图/表 10
图1分类诊断视角下, 创伤后应激障碍(PTSD)与其症状之间的关系(Borsboom & Cramer, 2013)。图顶部的椭圆形代表PTSD这一潜在疾病变量, 图底部的方框代表DSM系统中PTSD的症状:闯入性思维、噩梦、闪回等。此模型中, 箭头单向地从PTSD指向其可观测症状, 表示PTSD是引发这些症状的共同原因。
图1分类诊断视角下, 创伤后应激障碍(PTSD)与其症状之间的关系(Borsboom & Cramer, 2013)。图顶部的椭圆形代表PTSD这一潜在疾病变量, 图底部的方框代表DSM系统中PTSD的症状:闯入性思维、噩梦、闪回等。此模型中, 箭头单向地从PTSD指向其可观测症状, 表示PTSD是引发这些症状的共同原因。
图2RDoC倡议的精神障碍研究框架:研究应关注于负性效价系统、正性效价系统、认知系统、社会加工系统、唤起 / 调节系统和感觉运动系统这六大人类主要功能领域展开, 每个领域包含基因、分子、细胞、环路、生理、行为和自我报告这些基本分析单元。(资料来源:https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc.shtml)
图2RDoC倡议的精神障碍研究框架:研究应关注于负性效价系统、正性效价系统、认知系统、社会加工系统、唤起 / 调节系统和感觉运动系统这六大人类主要功能领域展开, 每个领域包含基因、分子、细胞、环路、生理、行为和自我报告这些基本分析单元。(资料来源:https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc.shtml)
图3心理病理学网络理论视角下的PTSD症状网络。17个节点分别代表DSM-IV中17个PTSD症状:闯入性思维、噩梦、闪回、情绪反应、生理反应、回避创伤相关想法、回避创伤提示活动、创伤相关遗忘、丧失兴趣、情感疏离、情感麻木、对未来的负性信念、睡眠问题、易激惹、注意力难以集中、高警觉、惊跳反应。节点间的绿边代表症状间的正相关, 红边代表负相关。边越粗, 相关性越高; 无边相连的节点间无相关。(资料来源:McNally et al., 2017)
图3心理病理学网络理论视角下的PTSD症状网络。17个节点分别代表DSM-IV中17个PTSD症状:闯入性思维、噩梦、闪回、情绪反应、生理反应、回避创伤相关想法、回避创伤提示活动、创伤相关遗忘、丧失兴趣、情感疏离、情感麻木、对未来的负性信念、睡眠问题、易激惹、注意力难以集中、高警觉、惊跳反应。节点间的绿边代表症状间的正相关, 红边代表负相关。边越粗, 相关性越高; 无边相连的节点间无相关。(资料来源:McNally et al., 2017)
图4网络理论中精神障碍的发展阶段。阶段1为无症状阶段, 网络处于稳定的休眠状态; 阶段2为网络初步激活阶段, 某些症状被外部事件E1直接激活; 阶段3为症状传播阶段, 阶段2中被激活的症状激活与其相连接的症状; 阶段4为稳定的网络激活状态, 若网络连接紧密, 外部事件的消失不会使网络恢复, 即网络自我维持并持续处于激活状态。[资料来源:根据Borsboom (2017)绘制]
图4网络理论中精神障碍的发展阶段。阶段1为无症状阶段, 网络处于稳定的休眠状态; 阶段2为网络初步激活阶段, 某些症状被外部事件E1直接激活; 阶段3为症状传播阶段, 阶段2中被激活的症状激活与其相连接的症状; 阶段4为稳定的网络激活状态, 若网络连接紧密, 外部事件的消失不会使网络恢复, 即网络自我维持并持续处于激活状态。[资料来源:根据Borsboom (2017)绘制]
图5连接较弱的网络(上图)具有韧性。症状可能由外部事件激活, 但症状之间的互相作用不够强, 无法导致自我维持的症状激活。相反, 连接较强的网络(下图)可以自我维持激活状态, 从而发展成为疾病状态。[资料来源:根据Borsboom (2017)绘制]
图5连接较弱的网络(上图)具有韧性。症状可能由外部事件激活, 但症状之间的互相作用不够强, 无法导致自我维持的症状激活。相反, 连接较强的网络(下图)可以自我维持激活状态, 从而发展成为疾病状态。[资料来源:根据Borsboom (2017)绘制]
图6由症状X1-X5组成的网络。症状X1与其他4个症状均为强连接, 为此网络中的核心症状; 症状X2-X5与其他症状的连接均只有1个强连接和2个弱连接, 为此网络中的边缘症状。
图6由症状X1-X5组成的网络。症状X1与其他4个症状均为强连接, 为此网络中的核心症状; 症状X2-X5与其他症状的连接均只有1个强连接和2个弱连接, 为此网络中的边缘症状。
图7由症状X1-X5组成的连接性强弱不同的网络及其类比多米诺骨牌图。左图为连接度较弱的网络, 类似于间距较大的多米诺骨牌。右图为连接度较强的网络, 类似于间距较小的多米诺骨牌。(资料来源:Cramer等, 2016)
图7由症状X1-X5组成的连接性强弱不同的网络及其类比多米诺骨牌图。左图为连接度较弱的网络, 类似于间距较大的多米诺骨牌。右图为连接度较强的网络, 类似于间距较小的多米诺骨牌。(资料来源:Cramer等, 2016)
图8PTSD的贝叶斯网络(DAG)。此网络中, 17个节点代表17个DSM-IV PTSD症状(同图3), 边的厚度表示此边所代表预测方向的概率大小; 位置越靠上的节点可认为越具有驱动力。(资料来源:McNally et al., 2017)
图8PTSD的贝叶斯网络(DAG)。此网络中, 17个节点代表17个DSM-IV PTSD症状(同图3), 边的厚度表示此边所代表预测方向的概率大小; 位置越靠上的节点可认为越具有驱动力。(资料来源:McNally et al., 2017)
图9PTSD潜变量网络。方块节点B1-E6分别代表20个DSM-5 PTSD症状, 圆圈节点1-7代表7个PTSD潜在维度。(资料来源:Li et al., 2020)
图9PTSD潜变量网络。方块节点B1-E6分别代表20个DSM-5 PTSD症状, 圆圈节点1-7代表7个PTSD潜在维度。(资料来源:Li et al., 2020)
图10左图、中图分别为仅在A、B症状簇内有连接的子样本网络; 右图为合并两样本后的网络。[资料来源:根据Fried和Cramer (2017)绘制]
图10左图、中图分别为仅在A、B症状簇内有连接的子样本网络; 右图为合并两样本后的网络。[资料来源:根据Fried和Cramer (2017)绘制]
参考文献 84
[1] | 蔡玉清, 董书阳, 袁帅, 胡传鹏. (2020). 变量间的网络分析模型及其应用. 心理科学进展, 28(1), 178-190. |
[2] | Adam, D. (2013). Mental health: On the spectrum. Nature, 496(7446), 416-418. https://doi.org/10.1097/00006324-192905000-00003 doi: https://doi.org/10.1097/00006324-192905000-00003URL |
[3] | Afzali, M. H., Sunderland, M., Teesson, M., Carragher, N., Mills, K., & Slade, T. (2017). A network approach to the comorbidity between posttraumatic stress disorder and major depressive disorder: The role of overlapping symptoms. Journal of Affective Disorders, 208, 490-496. https://doi.org/10.1016/j.jad.2016.10.037 doi: https://doi.org/10.1016/j.jad.2016.10.037URL |
[4] | Benfer, N., Bardeen, J. R., Cero, I., Kramer, L. B., Whiteman, S. E., Rogers, T. A., Silverstein, M. W., & Weathers, F. W. (2018). Network models of posttraumatic stress symptoms across trauma types. Journal of Anxiety Disorders, 58, 70-77. https://doi.org/10.1016/j.janxdis.2018.07.004 doi: https://doi.org/10.1016/j.janxdis.2018.07.004URL |
[5] | Birkeland, M. S., Greene, T., & Spiller, T. R. (2020). The network approach to posttraumatic stress disorder: A systematic review. European Journal of Psychotraumatology, 11(1). https://doi.org/10.1080/20008198.2019.1700614 doi: https://doi.org/10.1080/20008198.2019.1700614 |
[6] | Blake, M. J., Trinder, J. A., & Allen, N. B. (2018). Mechanisms underlying the association between insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions. Clinical Psychology Review, 63, 25-40. https://doi.org/10.1016/j.cpr.2018.05.006 doi: https://doi.org/10.1016/j.cpr.2018.05.006URL |
[7] | Boker, S. M., Molenaar, P. C. M., & Nesselroade, J. R. (2009). Issues in intraindividual variability: Individual differences in equilibria and dynamics over multiple time scales. Psychology and Aging, 24(4), 858-862. https://doi.org/10.1037/a0017912 doi: https://doi.org/10.1037/a0017912URL |
[8] | Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089-1108. https://doi.org/10.1002/jclp.20503 doi: 10.1002/jclp.20503pmid: 18683856 |
[9] | Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13. https://doi.org/10.1002/wps.20375 doi: 10.1002/wps.20375pmid: 28127906 |
[10] | Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91-121. https://doi.org/10.1146/annurev-clinpsy-050212-185608 doi: https://doi.org/10.1146/annurev-clinpsy-050212-185608URL |
[11] | Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of “evidence that psychopathology symptom networks have limited replicability” by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126(7), 989-999. https://doi.org/10.1037/abn0000306 doi: 10.1037/abn0000306pmid: 29106282 |
[12] | Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203-219. https://doi.org/10.1037/0033-295X.110.2.203 doi: 10.1037/0033-295X.110.2.203pmid: 12747522 |
[13] | Borsboom, D., Robinaugh, D. J., The, Psychosystems Group, Rhemtulla, M., & Cramer, A. O. J. (2018). Robustness and replicability of psychopathology networks. World Psychiatry, 17(2), 143-144. https://doi.org/10.1002/wps.20515 doi: 10.1002/wps.20515pmid: 29856550 |
[14] | Brandes, U. (2016). Network positions. Methodological Innovations, 9. https://doi.org/10.1177/2059799116630650 doi: https://doi.org/10.1177/2059799116630650 |
[15] | Bringmann, L. F. (2016). Dynamical networks in psychology: More than a pretty picture? (Unpublished Doctoral Dissertation). KU Leuven, Leuven, Belgium. https://doi.org/10.13140/RG.2.2.28223.10404 doi: https://doi.org/10.13140/RG.2.2.28223.10404 |
[16] | Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., … Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892-903. doi: 10.1037/abn0000446pmid: 31318245 |
[17] | Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck depression inventory-II. Psychological Medicine, 45(4), 747-757. https://doi.org/10.1017/S003329171400180 doi: 10.1017/S0033291714001809pmid: 25191855 |
[18] | Cao, X., Wang, L., Cao, C., Fang, R., Chen, C., Hall, B. J., & Elhai, J. D. (2019). Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms. Journal of Child Psychology and Psychiatry and Allied Disciplines, 60(2), 216-224. https://doi.org/10.1111/jcpp.12963 doi: https://doi.org/10.1111/jcpp.12963 |
[19] | Cao, X., Wang, L., Cao, C., Fang, R., Chen, C., Hall, B. J., & Elhai, J. D. (2020). Depicting the associations between different forms of psychopathology in trauma-exposed adolescents. European Child and Adolescent Psychiatry, 29(6), 827-837. https://doi.org/10.1007/s00787-019-01400-x doi: https://doi.org/10.1007/s00787-019-01400-xURL |
[20] | Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771. https://doi.org/10.1093/biomet/asn034 doi: https://doi.org/10.1093/biomet/asn034URL |
[21] | Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C. (2019). The study of psychopathology from the network analysis perspective: A systematic review. In Psychotherapy and Psychosomatics (Vol. 88, Issue 2, pp. 71-83). https://doi.org/10.1159/000497425 doi: 10.1159/000497425pmid: 30889609 |
[22] | Cramer, A. O. J., & Borsboom, D. (2015). Problems attract problems: A network perspective on mental disorders. Emerging Trends in the Social and Behavioral Sciences., 4(2), 191-193. |
[23] | Cramer, A. O. J., van Borkulo, C. D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS ONE, 11(12), 1-21. https://doi.org/10.1371/journal.pone.0167490 doi: https://doi.org/10.1371/journal.pone.0167490 |
[24] | de Ron, J., Fried, E. I., & Epskamp, S. (2019). Psychological networks in clinical populations: Investigating the consequences of Berkson's bias. Psychological Medicine, 51(1), 1-9. https://doi.org/10.1017/S0033291719003209 doi: https://doi.org/10.1017/S0033291719003209URL |
[25] | DeYoung, C. G., & Krueger, R. F. (2018). Understanding psychopathology: Cybernetics and psychology on the boundary between order and chaos. Psychological Inquiry, 29(3), 165-174. https://doi.org/10.1080/1047840X.2018.1513690 doi: https://doi.org/10.1080/1047840X.2018.1513690URL |
[26] | Epskamp, S. (2020). Psychometric network models from time-series and panel data. Psychometrika, 85(1), 206-231. https://doi.org/10.1007/s11336-020-09697-3 doi: 10.1007/s11336-020-09697-3pmid: 32162233 |
[27] | Epskamp, S., Borsboom, D., & Fried, E. I. (2018a). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212. https://doi.org/10.3758/s13428-017-0862-1 doi: https://doi.org/10.3758/s13428-017-0862-1URL |
[28] | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4). https://doi.org/10.18637/jss.v048.i04 doi: https://doi.org/10.18637/jss.v048.i04 |
[29] | Epskamp, S., & Fried, E. I. (2018b). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617-634. https://doi.org/10.1037/met0000167 doi: https://doi.org/10.1037/met0000167URL |
[30] | Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904-927. https://doi.org/10.1007/s11336-017-9557-x doi: 10.1007/s11336-017-9557-xpmid: 28290111 |
[31] | Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). Discovering psychological dynamics in time-series data. Multivariate Behavioral Research, 53(4), 453-480. https://doi.org/10.1080/00273171.2018.1454823 doi: 10.1080/00273171.2018.1454823pmid: 29658809 |
[32] | Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2017). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology, 126(7), 969-988. https://doi.org/10.1037/abn0000276 doi: https://doi.org/10.1037/abn0000276URL |
[33] | Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2019). Quantifying the reliability and replicability of psychopathology network characteristics. Multivariate behavioral research, 1-19. https://doi.org/10.1080/00273171.2019.1616526 doi: https://doi.org/10.1080/00273171.2019.1616526 |
[34] | Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 999-1020. https://doi.org/10.1177/1745691617705892 doi: 10.1177/1745691617705892pmid: 28873325 |
[35] | Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., … Karstoft, K.-I. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6(3), 335-351. https://doi.org/10.1177/2167702617745092 doi: 10.1177/2167702617745092pmid: 29881651 |
[36] | Fried, E. I., Epskamp, S., Nesse, R. M., Tuerlinckx, F., & Borsboom, D. (2016). What are “good” depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314-320. https://doi.org/10.1016/j.jad.2015.09.005 doi: 10.1016/j.jad.2015.09.005pmid: 26458184 |
[37] | Fried, E. I., & Nesse, R. M. (2015). Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. Journal of Affective Disorders, 172, 96-102. https://doi.org/10.1016/j.jad.2014.10.010 doi: 10.1016/j.jad.2014.10.010pmid: 25451401 |
[38] | Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10. https://doi.org/10.1007/s00127-016-1319-z doi: 10.1007/s00127-016-1319-zpmid: 27921134 |
[39] | Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. https://doi.org/10.1093/biostatistics/kxm045 doi: https://doi.org/10.1093/biostatistics/kxm045pmid: 18079126 |
[40] | Galatzer-levy, I. R., & Bryant, R. A. (2013). 636, 120 Ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8(6), 651-662. https://doi.org/10.1177/1745691613504115 doi: 10.1177/1745691613504115pmid: 26173229 |
[41] | Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), 1-27. https://doi.org/10.1371/journal.pone.0174035 doi: https://doi.org/10.1371/journal.pone.0174035 |
[42] | Guloksuz, S., Pries, L. K., & van Os, J. (2017). Application of network methods for understanding mental disorders: Pitfalls and promise. Psychological Medicine, 47(16), 2743-2752. https://doi.org/10.1017/S0033291717001350 doi: 10.1017/S0033291717001350pmid: 28578740 |
[43] | Hallquist, M. N., Wright, A. G. C. C., & Molenaar, P. C. M. (2019). Problems with centrality measures in psychopathology symptom networks: Why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, 1-25. https://doi.org/10.1080/00273171.2019.1640103 doi: https://doi.org/10.1080/00273171.2019.1640103 |
[44] | Hamaker, E. L. (2012). Why researchers should think “within-person”:A paradigmatic rationale. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life (pp. 43-61). The Guilford Press. |
[45] | Hasin, D., & Kilcoyne, B. (2012). Comorbidity of psychiatric and substance use disorders in the United States: Current issues and findings from the NESARC. Current Opinion in Psychiatry, 25(3), 165-171. https://doi.org/10.1097/YCO.0b013e3283523dcc doi: https://doi.org/10.1097/YCO.0b013e3283523dccURL |
[46] | Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 50(2), 853-861. https://doi.org/10.3758/s13428-017-0910-x doi: https://doi.org/10.3758/s13428-017-0910-x |
[47] | Have, M., Lamers, F., Wardenaar, K., Beekman, A., de Jonge, P., van Dorsselaer, S., Tuithof, M., Kleinjan, M., & de Graaf, R. (2016). The identification of symptom-based subtypes of depression: A nationally representative cohort study. Journal of Affective Disorders, 190, 395-406. https://doi.org/10.1016/j.jad.2015.10.040 doi: https://doi.org/10.1016/j.jad.2015.10.040URL |
[48] | Heeren, A., & McNally, R. J. (2016). A call for complexity in the study of social anxiety disorder. Commentary: The aetiology and maintenance of social anxiety disorder: A synthesis of complementary theoretical models and formulation of a new integrated model. Frontiers in Psychology, 7(1), 1963. https://doi.org/10.3389/fpsyg.2016.01963 doi: https://doi.org/10.3389/fpsyg.2016.01963 |
[49] | Heeren, A., & McNally, R. J. (2018). Social anxiety disorder as a densely interconnected network of fear and avoidance for social situations. Cognitive Therapy and Research, 42(1), 103-113. https://doi.org/10.1007/s10608-017-9876-3 doi: https://doi.org/10.1007/s10608-017-9876-3URL |
[50] | Hoffman, M., Steinley, D., Trull, T. J., & Sher, K. J. (2018). Criteria definitions and network relations: The importance of criterion thresholds. Clinical Psychological Science, 6(4), 506-516. https://doi.org/10.1177/2167702617747657 doi: https://doi.org/10.1177/2167702617747657URL |
[51] | Hofmann, S. G., Curtiss, J., & Mcnally, R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11(5), 597-605. https://doi.org/10.1177/1745691616639283 doi: https://doi.org/10.1177/1745691616639283pmid: 27694457 |
[52] | Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry Online, 167(7), 748-751. https://doi.org/10.1176/appi.ajp.2010.09091379 doi: https://doi.org/10.1176/appi.ajp.2010.09091379 |
[53] | Kalisch, M., & Bühlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the pc-algorithm. Journal of Machine Learning Research, 8, 613-636. Retrieved from http://www.jmlr.org/papers/v8/kalisch07a.html. |
[54] | Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of general psychiatry, 62(6), 617-627. https://doi.org/10.1001/archpsyc.62.6.617 doi: https://doi.org/10.1001/archpsyc.62.6.617pmid: 15939839 |
[55] | Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J., & Borsboom, D. (2013). Simpson's paradox in psychological science: A practical guide. Frontiers in Psychology, 4, 1-14. https://doi.org/10.3389/fpsyg.2013.00513 doi: https://doi.org/10.3389/fpsyg.2013.00513 |
[56] | Lauritzen, S. L. (1996). Graphical models (Vol. 17). Clarendon Press. |
[57] | Levinson, C. A., Brosof, L. C., Vanzhula, I., Christian, C., Jones, P., Rodebaugh, T. L., … Fernandez, K. C. (2018). Social anxiety and eating disorder comorbidity and underlying vulnerabilities: Using network analysis to conceptualize comorbidity. International Journal of Eating Disorders, 51(7), 693-709. https://doi.org/10.1002/eat.22890 doi: https://doi.org/10.1002/eat.22890URL |
[58] | Li, G., Wang, L., Cao, C., Fang, R., Bi, Y., Liu, P., … Elhai, J. D. (2020). An exploration of the DSM-5 posttraumatic stress disorder symptom latent variable network. European Journal of Psychotraumatology, 11(1). https://doi.org/10.1080/20008198.2020.1759279 doi: https://doi.org/10.1080/20008198.2020.1759279 |
[59] | McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95-104. https://doi.org/10.1016/j.brat.2016.06.006 doi: https://doi.org/10.1016/j.brat.2016.06.006URL |
[60] | McNally, R. J., Heeren, A., & Robinaugh, D. J. (2017). A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse. European Journal of Psychotraumatology, 8(sup3), 1341276. https://doi.org/10.1080/20008198.2017.1341276 doi: https://doi.org/10.1080/20008198.2017.1341276URL |
[61] | McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836-849. https://doi.org/10.1177/2167702614553230 doi: https://doi.org/10.1177/2167702614553230URL |
[62] | Moshier, S. J., Bovin, M. J., Gay, N. G., Wisco, B. E., Mitchell, K. S., Lee, D. J., … Marx, B. P. (2018). Examination of posttraumatic stress disorder symptom networks using clinician-rated and patient-rated data. Journal of Abnormal Psychology, 127(6), 541-547. https://doi.org/10.1037/abn0000368 doi: https://doi.org/10.1037/abn0000368URL |
[63] | Murri, M. B., Amore, M., Respino, M., & Alexopoulos, G. S. (2018). The symptom network structure of depressive symptoms in late-life: Results from a European population study. Molecular Psychiatry, 25, 1447-1456. https://doi.org/10.1038/s41380-018-0232-0 doi: https://doi.org/10.1038/s41380-018-0232-0URL |
[64] | Olbert, C. M., Gala, G. J., & Tupler, L. A. (2014). Quantifying heterogeneity attributable to polythetic diagnostic criteria: Theoretical framework and empirical application. Journal of Abnormal Psychology, 123(2), 452-462. https://doi.org/10.1037/a0036068 doi: https://doi.org/10.1037/a0036068URL |
[65] | Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. https://doi.org/10.1016/j.socnet.2010.03.006 doi: https://doi.org/10.1016/j.socnet.2010.03.006URL |
[66] | Papini, S., Rubin, M., Telch, M. J., Smits, J. A. J., & Hien, D. A. (2020). Pretreatment posttraumatic stress disorder symptom network metrics predict the strength of the association between node change and network change during treatment. Journal of Traumatic Stress, 33(1), 64-71. https://doi.org/10.1002/jts.22379 doi: https://doi.org/10.1002/jts.22379URL |
[67] | Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge University Press. |
[68] | Pearl, J. (2010). The mathematics of causal relations. In P. Shrout, K. Keyes & K. Ornstein (Eds.). Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 47-65). Oxford University Press. |
[69] | Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008-2018 and an agenda for future research. Psychological Medicine, 50(3), 353-366. https://doi.org/10.1017/S0033291719003404 doi: 10.1017/S0033291719003404pmid: 31875792 |
[70] | Robinaugh, D. J., LeBlanc, N. J., Vuletich, H. A., & McNally, R. J. (2014). Network analysis of persistent complex bereavement disorder in conjugally bereaved adults. Journal of Abnormal Psychology, 123(3), 510-522. https://doi.org/10.1037/abn0000002 doi: 10.1037/abn0000002pmid: 24933281 |
[71] | Ryan, O., Bringmann, L. F., & Schuurman, N. K. (2019). The challenge of generating causal hypotheses using network models. PsyArXiv, 1-30. |
[72] | Santos, H., Fried, E. I., Asafu-Adjei, J., & Jeanne Ruiz, R. (2017). Network structure of perinatal depressive symptoms in latinas: Relationship to stress and reproductive biomarkers. Research in Nursing and Health, 40(3), 218-228. https://doi.org/10.1002/nur.21784 doi: https://doi.org/10.1002/nur.21784URL |
[73] | Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53. https://doi.org/10.1016/j.newideapsych.2011.02.007 doi: https://doi.org/10.1016/j.newideapsych.2011.02.007URL |
[74] | Schmitz, B., & Skinner, E. (1993). Perceived control, effort, and academic performance: Interindividual, intraindividual, and multivariate time-series analyses. Journal of Personality and Social Psychology, 64(6), 1010-1028. https://doi.org/10.1037/0022-3514.64.6.1010 doi: https://doi.org/10.1037/0022-3514.64.6.1010URL |
[75] | Schoch, D., & Brandes, U. (2016). Re-conceptualizing centrality in social networks. European Journal of Applied Mathematics, 27(6), 971-985. https://doi.org/10.1017/S0956792516000401 doi: https://doi.org/10.1017/S0956792516000401URL |
[76] | Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35, 1-22. Retrieved from http://www.jstatsoft.org/v35/i03/ |
[77] | Smith, K. E., Crosby, R. D., Wonderlich, S. A., Forbush, K. T., Mason, T. B., & Moessner, M. (2018). Network analysis: An innovative framework for understanding eating disorder psychopathology. International Journal of Eating Disorders, 51(3), 214-222. https://doi.org/10.1002/eat.22836 doi: https://doi.org/10.1002/eat.22836URL |
[78] | Snijders, T. A. B. (2011). Statistical models for social networks. Annual Review of Sociology, 37, 131-153. https://doi.org/10.1146/annurev.soc.012809.102709 doi: https://doi.org/10.1146/annurev.soc.012809.102709URL |
[79] | Southward, M. W., & Cheavens, J. S. (2018). Identifying core deficits in a dimensional model of borderline personality disorder features: A network analysis. Clinical Psychological Science, 6(5), 685-703. https://doi.org/10.1177/2167702618769560 doi: 10.1177/2167702618769560pmid: 30854263 |
[80] | Spiller, T. R., Levi, O., Neria, Y., Suarez-Jimenez, B., Bar-Haim, Y., & Lazarov, A. (2020). On the validity of the centrality hypothesis in cross-sectional between-subject networks of psychopathology. BMC Medicine, 18(1), 1-14. https://doi.org/10.1186/s12916-020-01740-5 doi: https://doi.org/10.1186/s12916-020-01740-5URL |
[81] | van Bork, R., Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., & Borsboom, D. (2019). Latent variable models and networks: Statistical equivalence and testability. Multivariate Behavioral Research, 1-24. https://doi.org/10.1080/00273171.2019.1672515 doi: https://doi.org/10.1080/00273171.2019.1672515 |
[82] | van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Lourens, J. W., & Schoevers, R. A. (2015). Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry, 72(12), 1219-1226. https://doi.org/10.1001/jamapsychiatry.2015.2079 doi: https://doi.org/10.1001/jamapsychiatry.2015.2079URL |
[83] | van Borkulo, C. D., van Bork, B., Boschloo, L., Kossakowski, J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2017). Comparing network structures on three aspects: A permutation test. Manuscript submitted for publication, 10. https://doi.org/10.13140/RG.2.2.29455.38569 doi: https://doi.org/10.13140/RG.2.2.29455.38569 |
[84] | Wardenaar, K. J., Monden, R., Conradi, H. J., & de Jonge, P. (2015). Symptom-specific course trajectories and their determinants in primary care patients with major depressive disorder: Evidence for two etiologically distinct prototypes. Journal of Affective Disorders, 179, 38-46. https://doi.org/10.1016/j.jad.2015.03.029 doi: 10.1016/j.jad.2015.03.029pmid: 25845748 |
相关文章 15
[1] | 刘宇, 胡传鹏, 樊富珉, 孙沛, 徐杰, 蔡玉清, 刘雪莉. 基于网络理论的物质成瘾新视角[J]. 心理科学进展, 2021, 29(2): 296-310. |
[2] | 蔡玉清, 董书阳, 袁帅, 胡传鹏. 变量间的网络分析模型及其应用[J]. 心理科学进展, 2020, 28(1): 178-190. |
[3] | 张火垠, 张明明, 丁瑞, 李帅霞, 罗文波. “养育脑”网络及其影响因素[J]. 心理科学进展, 2019, 27(6): 1072-1084. |
[4] | 赵鹤宾, 夏勉, 曹奔, 江光荣. 接触干预在减少精神障碍公众污名中的应用[J]. 心理科学进展, 2019, 27(5): 843-857. |
[5] | 靳宇倡, 余梦, 胡云龙. 网络游戏成瘾研究的争议及趋势[J]. 心理科学进展, 2019, 27(1): 83-95. |
[6] | 吴才智, 谌 燕, 孙启武, 于丽霞, 江光荣. 心理解剖及其在自杀研究中的应用[J]. 心理科学进展, 2018, 26(3): 503-517. |
[7] | 邓小平, 徐晨, 程懋伟, 张向葵. 青少年偏差行为的同伴选择和影响效应:基于纵向社会网络的元分析[J]. 心理科学进展, 2017, 25(11): 1898-1909. |
[8] | 王铭;江光荣. 情绪障碍及其干预:心理表象的视角[J]. 心理科学进展, 2016, 24(4): 573-590. |
[9] | 杜睿;江光荣. 自杀行为:影响因素、理论模型及研究展望[J]. 心理科学进展, 2015, 23(8): 1437-1452. |
[10] | 陈子晨;汪新建. 躯体化的心身交互机制及其中的文化因素[J]. 心理科学进展, 2015, 23(5): 849-857. |
[11] | 陈子晨;汪新建. 从DSM-Ⅳ躯体形式障碍到DSM-5躯体症状障碍[J]. 心理科学进展, 2013, 21(11): 1967-1975. |
[12] | 马绍奇;焦璨;张敏强. 社会网络分析在心理研究中的应用[J]. 心理科学进展, 2011, 19(5): 755-764. |
[13] | 孟景;沈林;Todd Jackson;陈红. 疼痛对心理的影响及其机制[J]. 心理科学进展, 2011, 19(10): 1493-1501. |
[14] | 崔芳;南云;罗跃嘉. 共情的认知神经研究回顾[J]. 心理科学进展, 2008, 16(2): 250-254. |
[15] | 佟云霞. 临床心理学的认知研究及信息加工观点[J]. 心理科学进展, 1995, 3(1): 40-45. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5594