删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双模态情感分析的弹幕网络视频平台营销策略

本站小编 Free考研考试/2022-01-01

李稚(), 朱春红
天津工业大学经济与管理学院, 天津 300387
收稿日期:2021-01-12发布日期:2021-07-22
通讯作者:李稚E-mail:lizhi@tiangong.edu.cn

基金资助:国家自然科学基金青年项目(72002153);全国统计科学研究项目(2019LY41);国家自然科学基金面上项目(41971249)

The marketing strategy of online video based on danmaku-video: A bimodal analysis

LI Zhi(), ZHU Chunhong
School of economics and management, Tiangong university, Tianjin 300387, China
Received:2021-01-12Published:2021-07-22
Contact:LI Zhi E-mail:lizhi@tiangong.edu.cn






摘要/Abstract


摘要: 随着互联网飞跃发展, 弹幕视频应运而生。这种新型的用户与视频交互方式具有新特性, 如用户情感表达实时动态性、情感分布多峰性。同时, 新特性也给实际研究工作带来挑战, 如用户画像刻画难度增大, 视频推荐和广告推送所需精度提高。现有研究尚未对弹幕视频的新特性进行深入分析, 也没有充分挖掘其本身所蕴含的学术研究价值。本文利用深度学习、自然语言处理技术、系统动力学方法, 结合心理学、市场营销学等多学科交叉前沿知识, 从数据驱动角度对弹幕视频数据进行分析和建模, 深度挖掘视频大数据潜在的商业价值。重点研究弹幕与视频双模态融合的情感识别方法; 构建带有用户情感特征的动态用户画像, 并建立基于用户画像的网络视频粘性营销机制; 分析用户情感与视频广告插播方式的相关性, 提出视频广告动态插播策略。丰富现有研究的同时, 为网络视频企业准确定位与分析用户需求, 创建高品质的智能营销平台供理论与决策支持。



图1本文研究内容框架图
图1本文研究内容框架图



图2弹幕文本模态特征提取网络图
图2弹幕文本模态特征提取网络图



图3弹幕评论与视频画面相关性示意图
图3弹幕评论与视频画面相关性示意图



图4网络视频平台粘性营销机制模型
图4网络视频平台粘性营销机制模型



图5基于动态用户画像的网络视频平台粘性营销机制模型
图5基于动态用户画像的网络视频平台粘性营销机制模型



图6“拼多多”广告眼动实验结果图
图6“拼多多”广告眼动实验结果图



图7“途牛”广告眼动实验结果图
图7“途牛”广告眼动实验结果图



图8弹幕文本与广告品牌的一致性示意图
图8弹幕文本与广告品牌的一致性示意图


表1网络视频主题分类——广告类型归纳
主题 节目举例 广告类型
综艺 奇葩说第六集(爱奇艺) 口播广告、视频浮层广告
演员请就位(腾讯) 口播广告、视频浮层广告、创意中插广告、中播广告
明星大侦探5(芒果TV) 口播广告、创意中插广告、视频浮层广告
电视剧 小欢喜(爱奇艺) 创意中插广告、中播广告、视频浮层广告
三生三世十里桃花(腾讯) 中播广告、创意中插广告
海棠经雨胭脂透(芒果TV) 中播广告、视频浮层广告
电影 狙击手(爱奇艺) 中播广告
中国机长(腾讯)
动漫 海贼王(爱奇艺) 中播广告、视频浮层广告
秦时明月之君临天下(优酷) 中播广告、视频浮层广告、创意中插广告
名侦探柯南(芒果TV) 视频浮层广告
体育 2019ATP男单总决赛—蒂姆VS贝雷蒂尼(爱奇艺) 中播广告、口播广告
NBA凯尔特人VS勇士(腾讯) 中播广告
CBA 辽宁本钢VS八一(优酷) 视频浮层广告

表1网络视频主题分类——广告类型归纳
主题 节目举例 广告类型
综艺 奇葩说第六集(爱奇艺) 口播广告、视频浮层广告
演员请就位(腾讯) 口播广告、视频浮层广告、创意中插广告、中播广告
明星大侦探5(芒果TV) 口播广告、创意中插广告、视频浮层广告
电视剧 小欢喜(爱奇艺) 创意中插广告、中播广告、视频浮层广告
三生三世十里桃花(腾讯) 中播广告、创意中插广告
海棠经雨胭脂透(芒果TV) 中播广告、视频浮层广告
电影 狙击手(爱奇艺) 中播广告
中国机长(腾讯)
动漫 海贼王(爱奇艺) 中播广告、视频浮层广告
秦时明月之君临天下(优酷) 中播广告、视频浮层广告、创意中插广告
名侦探柯南(芒果TV) 视频浮层广告
体育 2019ATP男单总决赛—蒂姆VS贝雷蒂尼(爱奇艺) 中播广告、口播广告
NBA凯尔特人VS勇士(腾讯) 中播广告
CBA 辽宁本钢VS八一(优酷) 视频浮层广告



图9理论假设模型框架图
图9理论假设模型框架图







[1] 陈丹, 罗烨, 吴智勤. (2019). 基于大数据挖掘和用户画像的高校图书馆个性化服务研究. 图书馆研究与工作, 4, 50-59.
[2] 邓扬, 张晨曦, 李江峰. (2017). 基于弹幕情感分析的视频片段推荐模型. 计算机应用, 37(4), 1065-1070.
[3] 范钧, 潘健军. (2016). 剧情式视频广告中品牌—情节信息对受众传播意愿的影响. 营销科学学报, 12(2), 111-123.
[4] 高茂庭, 杨涛. (2020). 融合协同过滤和主题模型的弹幕视频推荐算法. 计算机应用研究, 37(12), 3565-3568+ 3577.
[5] 龚诗阳, 李倩, 余承锬. (2017). 在线社交对消费者需求的影响研究—基于网络视频产业的实证分析. 中国软科学, 7, 39-48.
[6] 郭伏, 叶国全, 李明明, 吕伟. (2017). 植入式广告显著度对广告效果影响的眼动研究—以电影植入式广告为例. 营销科学学报, 4, 18-33.
[7] 洪庆, 王思尧, 赵钦佩, 李江峰, 饶卫雄. (2018). 基于弹幕情感分析和聚类算法的视频用户群体分类. 计算机工程与科学, 40(6), 1125-1139.
[8] 勒伯夫 G.(2012). 粘性营销: 新时代的营销圣经(派力译译). 北京: 中国商业出版社.
[9] 李泽中, 张海涛, 张鑫蕊, 王兴鲁, 孙鸿飞. (2020). 融合用户社交与情境信息的虚拟知识社区个性化知识推荐研究. 情报理论与实践, 43(4), 152-158
[10] 刘海鸥, 刘旭, 姚苏梅. 谢姝琳. (2019). 基于舆情画像的在线社交用户信息传播特征统计分析. 现代情报, 39(9):64-73.
[11] 刘启元, 张栋, 吴良庆, 李寿山. (2019). 基于上下文增强LSTM的多模态情感分析. 计算机科学, 46(11), 181-185.
[12] 刘婷艳, 王晰巍, 贾若男, 王微. (2020). 视频网站用户生成内容国内外发展动态及发展趋势. 情报科学, 38(10), 133-140.
[13] 王敏, 徐健. (2019). 视频弹幕与字幕的情感分析与比较研究. 图书情报知识, 5, 109-119.
[14] 王贇芝, 王雪, 查先进. (2020). 弹幕视频网站用户从众信息评论行为驱动因素探索. 信息资源管理学报, 10(4), 60-69.
[15] 吴剑云, 胥明珠. (2021). 基于用户画像和视频兴趣标签的个性化推荐. 情报科学, 39(1), 128-134.
[16] 徐海玲, 张海涛, 魏明珠, 尹慧子. (2019). 社交媒体用户画像的构建及资源聚合模型研究. 图书情报工作, 63(9), 109-115.
[17] 俞淑平, 陈刚. (2011). 一种高效的行为定向广告投放算法. 计算机应用与软件, 28(1), 4-7.
[18] 袁海霞, 方青青, 白琳. (2020). 弹幕对在线消费行为过程影响的时变效应研究. 管理学报, 17(7), 1059-1066.
[19] 张海涛, 崔阳, 王丹, 宋拓. (2018). 基于概念格的在线健康社区用户画像研究. 情报学报, 37(9), 912-922.
[20] 张帅, 王文韬, 周华任, 占南. (2018). 基于扎根理论的弹幕视频网站用户使用行为驱动因素研究. 情报理论与实践, 41(7), 117-122.
[21] 张涛, 翁康年, 邓悦, 杨满, 张玥杰. (2021). 基于网络浏览行为的小众领域用户画像建模. 系统工程理论与实践, 40(3), 641-652.
[22] 庄须强, 刘方爱. (2018). 基于AT-LSTM的弹幕评论情感分析. 数字技术与应用, 36(2), 210-212.
[23] Bansal T., Das M., & Bhattacharyya C. (2015). Content driven user profiling for comment-worthy recommendations of news and blog articles. ACM Conference on Recommender Systems, 195-202.
[24] Bao L. N., Le D.-N., van Chung L., & Nguyen G. N.(2016). Performance evaluation of video-based face recognition approaches for online video contextual advertisement user-oriented system. Proceedings paper: Information Systems Design and Intelligent Applications Conference, 3, 287-295.
[25] Barnett S. B., & Cerf M. (2017). A ticket for your thoughts: Method for predicting content recall and sales using neural similarity of moviegoers. Journal of Consumer Research, 44(1):160-181.
[26] Belanche D., Flavián C., & Pérez-Rueda A. (2017). Understanding interactive online advertising: congruence and product involvement in highly and lowly arousing, skippable video ads. Journal of Interactive Marketing, 37, 75-88.
doi: 10.1016/j.intmar.2016.06.004URL
[27] Bellman S., Nenycz-Thiel M., Kennedy R., Larguinat L., McColl B., & Varan D. (2017). What makes a television commercial sell? Using biometrics to identify successful ads. Journal of Advertising Research, 57(1), 53-66.
doi: 10.2501/JAR-2016-051URL
[28] Bendak S., & Al-Saleh K. (2010). The role of roadside advertising signs in distracting drivers. International Journal of Industrial Ergonomics, 40(3), 233-236.
doi: 10.1016/j.ergon.2009.12.001URL
[29] Berlyne D. E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8, 279-286.
doi: 10.3758/BF03212593URL
[30] Brehm J. W. A. (1966). A theory of psychological reactance. New York: Academic Press Inc.
[31] Bruce N. I., BeckerM, & Reinartz W. (2020). Communicating brands in television advertising. Journal of Marketing Research, 57(2), 236-256.
doi: 10.1177/0022243719892576URL
[32] Chen X., Nguyen T. V., Shen Z. Q., & Kankanhalli M. (2019). Livesense:Contextual advertising in live streaming videos. Proceedings paper of 27th ACM International Conference on Multimedia (MM), 19, 392-400.
[33] Cheng Z. -Q., Liu Y., Wu X., & Hua X. -S. (2016). Video ecommerce: Towards online video advertising. Proceedings of the 24th ACM Multimedia Conference, 16, 1365-1374.
[34] Chiang H. S., & Hsiao K. L. (2015). Youtube stickiness: The needs, personal, and environmental perspective. Internet Research, 25(1), 85-106.
doi: 10.1108/IntR-11-2013-0236URL
[35] CostaM, BonettiL, Vignali V., Bichicchi A., Lantieri C., & Simone A. (2019). Driver's visual attention to different categories of roadside advertising signs. Applied Ergonomics, 78, 127-136.
doi: 10.1016/j.apergo.2019.03.001URL
[36] Fossen B. L., & Schweidel D. A. (2017). Television advertising and online word-of-mouth: An empirical investigation of social TV activity. Marketing Science, 36(1), 105-123.
doi: 10.1287/mksc.2016.1002URL
[37] Gorodnichenko Y., & Weber M. (2016). Are sticky prices costly? Evidence from the stock market. American Economic Review, 106(1), 165-199.
[38] He M., Ge Y., WuL. Chen E., & Tan C. (2016). Predicting the popularity of Dan Mu-enabled videos: A multi-factor view. Database Systems for Advanced Applications, 351-366.
[39] Hu A., & Flaxman S. (2018). Multimodal sentiment analysis to explore the structure of emotions. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, 350-358.
[40] Huang F., Zhang X., Zhao Z., Xu J., & Li Z. (2019). Image-text sentiment analysis via deep multimodal attentive fusion. Knowledge-Based Systems, 167, 26-37.
doi: 10.1016/j.knosys.2019.01.019URL
[41] Hui S. K., Meyvis T., & Assael H. (2014). Analyzing moment-to-moment data using a bayesian functional linear model: Application to TV show pilot testing. Marketing Science, 33(2), 222-240.
doi: 10.1287/mksc.2013.0835URL
[42] Hogarth R. M., & Einhorn H. J. (1992). Order effects in belief updating the belief adjustment model. Cognitive Psychology, 24(1), 1-55.
doi: 10.1016/0010-0285(92)90002-JURL
[43] Kim H., & Bruce N. I. (2018). Should sequels differ from original movies in pre-launch advertising schedule? Lessons from consumers’ online search activity. International Journal of Research in Marketing, 35(1), 116-143.
doi: 10.1016/j.ijresmar.2017.12.006URL
[44] Kumar A., Srinivasan K., Cheng W. -H., & Zomaya A. Y. (2020). Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Information Processing & Management, 57(1), 1-25.
[45] Lau R. Y. K., Zhang W., & Xu W. (2018). Parallel aspect-oriented sentiment analysis for sales forecasting with big data. Production and Operations Management, 27(10), 1775-1794.
doi: 10.1111/poms.2018.27.issue-10URL
[46] Li D. F., Hu B. T., Chen Q. C., Wang X., Qi Q., Wang L., & Liu H. (2021). Attentive capsule network for click-through rate and conversion rate prediction in online advertising. Knowledge-Based Systems, 211, 106522.
doi: 10.1016/j.knosys.2020.106522URL
[47] Li G., Park S. T., & Jin H. (2017). Antecedents of WeChat group chatting user’s stickiness and organizational commitment. Journal of Engineering and Applied Sciences, 12(1), 5708-5713.
[48] Li Z., Li R., & Jin G. (2020). Sentiment analysis of danmaku videos based on naïve bayes and sentiment dictionary. IEEE Access, 5, 75073-75084.
[49] Liu D. -., Liao Y. -., Chung Y. -., & Chen K. -Y. (2019). Advertisement recommendation based on personal interests and ad push fairness. Kybernetes, 48(8), 1-21.
[50] Lu H. -P., & Lee M. -R. (2010). Demographic differences and the antecedents of blog stickiness. Online Information Review, 34 (1), 21-38.
doi: 10.1108/14684521011024100URL
[51] Lv G., Xu T., Chen E., Liu Q., & Zheng Y. (2016). Reading the videos:temporal labeling for crowdsourced time-sync videos based on semantic embedding. Thirtieth AAAI Conference on Artificial Intelligence, 3000-3006.
[52] Majumder N., Hazarika D., Gelbukh A., Cambria E., & Poria S. (2018). Multimodal sentiment analysis using hierarchical fusion with context modeling. Knowledge- Based Systems, 161, 124-133.
doi: 10.1016/j.knosys.2018.07.041URL
[53] Olbrich R., & Holsing C. (2011). Modeling consumer purchasing behavior in social shopping communities with clickstream data. International Journal of Electronic Commerce, 16(2), 15-40.
doi: 10.2753/JEC1086-4415160202URL
[54] Peng D., Tian W., Zhu M., Ren Y., Lin X., & Li M. (2020). TargetingVis: Visual exploration and analysis of targeted advertising data. Journal of Visualization, 23(6), 1113-1127.
doi: 10.1007/s12650-020-00671-wURL
[55] Piao G., & Breslin J. G. (2016). Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations. ACM International conference on semantic systems, 81-88.
[56] Ramanathan S., & McGill A. L. (2007). Consuming with others: Social influences on moment-to-moment and retrospective evaluations of an experience. Journal of Consumer Research, 34(4), 506-524.
doi: 10.1086/520074URL
[57] Rong K., Xiao F., Zhang X., & Wang J. (2019). Platform strategies and user stickiness in the online video industry. Technological Forecasting & Social Change, 143, 249-259.
[58] ,, & Sánchez P., & Bellogín A.(2019). Building user profiles based on sequences for content and collaborative filtering. Information Processing & Management, 56(1), 192-211.
doi: 10.1016/j.ipm.2018.10.003URL
[59] Simmonds L., Bellman S., Kennedy R., Nenycz-Thiel M., & Bogomolova S. (2020). Moderating effects of prior brand usage on visual attention to video advertising and recall: An eye-tracking investigation. Journal of Business Research, 111, 241-248.
doi: 10.1016/j.jbusres.2019.02.062URL
[60] Skehan P. (1996). A Framework for the Implementation of task-based instruction. Applied Linguistics, 17(1), 38-62.
doi: 10.1093/applin/17.1.38URL
[61] Sun Q., Niu J., Yao Z., & Yan H. (2019). Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level. Engineering Applications of Artificial Intelligence, 81, 68-78.
doi: 10.1016/j.engappai.2019.02.004URL
[62] Teixeira T. S., Wedel M., & Pieters R. (2010). Moment- to-moment optimal branding in TV commercials: Preventing avoidance by pulsing. Marketing Science, 29(5), 783-804.
doi: 10.1287/mksc.1100.0567URL
[63] Thompson J., Leung B., Blair M. R., & Taboada M. (2017). Sentiment analysis of player chat messaging in the video game StarCraft 2: Extending a lexicon-based model. Knowledge-Based Systems, 137, 149-162.
doi: 10.1016/j.knosys.2017.09.022URL
[64] Travis D. (2003). E-commerce usability: Tools and techniques to perfect the on-line experience. CRC Press, London.
[65] Trusov M., Ma L., & Jamal Z. (2016). Crumbs of the cookie: User profiling in customer-base analysis and behavioral targeting. Marketing Science, 35(3), 405-426.
doi: 10.1287/mksc.2015.0956URL
[66] Wang G., Zhuo L., Li J., Ren D., & Zhang J. (2018). An efficient method of content-targeted online video advertising. Journal of Visual Communication and Image Representation, 50, 40-48.
doi: 10.1016/j.jvcir.2017.11.001URL
[67] Young C., Gillespie B., & Otto C. (2019). The impact of rational, emotional, and physiological advertising images on purchase intention: how TV ads influence brand memory. Journal of Advertising Research, 59(3), 329-341.
doi: 10.2501/JAR-2019-010URL
[68] Yu S., Christakopoulou E., & Gupta A. (2016). Identifying decision makers from professional social networks. ACM SIGKDD International Conference on Knowledge Discovery and Data mining, New York: ACM, 333-342.
[69] Zhang Q., Wang W., & Chen Y. (2020). Frontiers: In-consumption social listening with moment-to-moment unstructured data: The case of movie appreciation and live comments. Marketing Science, 39(2), 1-11.
doi: 10.1287/mksc.2019.1205URL
[70] Zhao F., Zhu Y., Jin H., & Yang L. T. (2016). A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Generation Computer Systems, 65, 196-206.
doi: 10.1016/j.future.2015.10.012URL
[71] Zhou J. L., Zhou J., Ding Y., & Wang H. (2019). The magic of danmaku: A social interaction perspective of gift sending on live streaming platforms. Electronic Commerce Research and Applications, 34, 1-9.




No related articles found!





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5567
相关话题/广告 营销 创意 情报 实验