删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

密集追踪数据分析:模型及其应用

本站小编 Free考研考试/2022-01-01

郑舒方, 张沥今, 乔欣宇, 潘俊豪()
中山大学心理学系, 广州 510006
收稿日期:2020-08-25出版日期:2021-11-15发布日期:2021-09-23
通讯作者:潘俊豪E-mail:panjunh@mail.sysu.edu.cn

基金资助:国家自然科学基金项目(31871128);教育部人文社会科学研究规划基金项目(18YJA190013)

Intensive longitudinal data analysis: Models and application

ZHENG Shufang, ZHANG Lijin, QIAO Xinyu, PAN Junhao()
Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
Received:2020-08-25Online:2021-11-15Published:2021-09-23
Contact:PAN Junhao E-mail:panjunh@mail.sysu.edu.cn






摘要/Abstract


摘要: 在心理学、教育学和临床医学等领域, 越来越多的研究者开始关注个体内部的行为、心理、临床效果等随时间而产生的动态变化, 重视针对个体的差异化建模。密集追踪是一种在短时间内对个体进行多个时间节点密集追踪测量的方法, 更适合用于研究个体内部心理过程等的动态变化及其作用机制。近年来, 密集追踪成为心理学研究的一大热点, 但许多密集追踪的研究分析仍停留在较为传统的方法。方法学领域已涌现出较多用于密集追踪数据分析的模型方法, 较为主流的模型包括以动态结构方程模型(Dynamic Structural Equation Model, DSEM)为代表的自上而下的建模方法, 以及以组迭代多模型估计(Group Iterative Multiple Model Estimation, GIMME)为代表的自下而上的建模方法。二者均可以方便地对密集追踪数据中的自回归及交叉滞后效应进行建模。



图1抑郁水平对吸烟欲望的影响 注:圆圈内变量为潜变量, 方框内变量为显变量。下标i表示第i个个体的测量, t表示第t个时间点的观测数据。
图1抑郁水平对吸烟欲望的影响 注:圆圈内变量为潜变量, 方框内变量为显变量。下标i表示第i个个体的测量, t表示第t个时间点的观测数据。



图2吸烟欲望和抑郁水平的动态关系 注:圆圈内变量为潜变量, 方框内变量为显变量。(W)表示个体内的估计, “吸烟”和“抑郁”分别表示吸烟欲望和抑郁水平。${{\Phi }_{\text{11},\ i}}$和${{\Phi }_{\text{22},\ i}}$分别表示吸烟欲望和抑郁水平的自回归效应, ${{\Phi }_{\text{21},\ i}}$和${{\Phi }_{\text{12},\ i}}$分别表示上一时间点的吸烟欲望对当前抑郁水平、上一时间点的抑郁水平对当前吸烟欲望的交叉滞后效应。$\mu $表示均值, $\delta_{吸烟,i,t}$和$\delta_{抑郁,i,t}$分别表示吸烟欲望和抑郁水平的残差项。${{\pi }_{1,\ i}}$和${{\pi }_{2,\ i}}$分别为${{\delta }_{\text{1},\ i,\ t}}$和${{\delta }_{\text{2},\ i,\ t}}$的方差。为了更清晰地呈现模型假设, 模型图中未呈现与去时间趋势有关的路径。
图2吸烟欲望和抑郁水平的动态关系 注:圆圈内变量为潜变量, 方框内变量为显变量。(W)表示个体内的估计, “吸烟”和“抑郁”分别表示吸烟欲望和抑郁水平。${{\Phi }_{\text{11},\ i}}$和${{\Phi }_{\text{22},\ i}}$分别表示吸烟欲望和抑郁水平的自回归效应, ${{\Phi }_{\text{21},\ i}}$和${{\Phi }_{\text{12},\ i}}$分别表示上一时间点的吸烟欲望对当前抑郁水平、上一时间点的抑郁水平对当前吸烟欲望的交叉滞后效应。$\mu $表示均值, $\delta_{吸烟,i,t}$和$\delta_{抑郁,i,t}$分别表示吸烟欲望和抑郁水平的残差项。${{\pi }_{1,\ i}}$和${{\pi }_{2,\ i}}$分别为${{\delta }_{\text{1},\ i,\ t}}$和${{\delta }_{\text{2},\ i,\ t}}$的方差。为了更清晰地呈现模型假设, 模型图中未呈现与去时间趋势有关的路径。



图3吸烟欲望随时间发生的变化 注:图3a为吸烟欲望的原始测量随时间变化的总体趋势; 图3b表示去除数据中随时间线性变化的趋势之后的结果。
图3吸烟欲望随时间发生的变化 注:图3a为吸烟欲望的原始测量随时间变化的总体趋势; 图3b表示去除数据中随时间线性变化的趋势之后的结果。



图4群体模型 注:urge: 吸烟欲望; dep: 抑郁水平。黑线表示群体模型中的路径, 灰线表示个体模型中存在的路径, 实线代表同时效应, 虚线表示滞后效应(包括自回归和交叉滞后效应)。线条粗细表示模型中存在该路径的个体数量的多少。
图4群体模型 注:urge: 吸烟欲望; dep: 抑郁水平。黑线表示群体模型中的路径, 灰线表示个体模型中存在的路径, 实线代表同时效应, 虚线表示滞后效应(包括自回归和交叉滞后效应)。线条粗细表示模型中存在该路径的个体数量的多少。



图5个体模型(随机示例) 注:urge: 吸烟欲望; dep: 抑郁水平。红线表示正向的效应, 蓝线表示负向的效应, 实线代表同时效应, 虚线表示滞后效应(包括自回归和交叉滞后效应)。
图5个体模型(随机示例) 注:urge: 吸烟欲望; dep: 抑郁水平。红线表示正向的效应, 蓝线表示负向的效应, 实线代表同时效应, 虚线表示滞后效应(包括自回归和交叉滞后效应)。


表1密集追踪的主流方法优缺点
模型方法 优点 缺点
MLM/MSEM 简单易行; 对时间点数量要求相对较低 假设不同个体间变量的相互作用机制是同质的; 难以分析个体内部的动态变化过程及机制, 建模不够灵活
mlVAR 对时间点数量要求相对较低; 适用于较多变量间的动态交互; 结果可视性强 假设不同个体间变量的相互作用机制是同质的; 不考虑潜变量因子结构
DSEM 可以将随机效应分解为个体和时间两个方面的来源; 在时间节点和随机效应的数量上限制较少; 允许测量时间节点之间间隔不同 假设不同个体间变量的相互作用机制是同质的; 需要对被试测量较多时间点
(LV-)GIMME 针对单个被试进行建模, 考虑个体内部的动态变化过程及机制的异质性; 适用于较多变量间的动态交互; 自动化搜索 可能出现模型过拟合; 无法将几乎不随时间变化的变量纳入模型; 需要对单个被试测量较多时间点

表1密集追踪的主流方法优缺点
模型方法 优点 缺点
MLM/MSEM 简单易行; 对时间点数量要求相对较低 假设不同个体间变量的相互作用机制是同质的; 难以分析个体内部的动态变化过程及机制, 建模不够灵活
mlVAR 对时间点数量要求相对较低; 适用于较多变量间的动态交互; 结果可视性强 假设不同个体间变量的相互作用机制是同质的; 不考虑潜变量因子结构
DSEM 可以将随机效应分解为个体和时间两个方面的来源; 在时间节点和随机效应的数量上限制较少; 允许测量时间节点之间间隔不同 假设不同个体间变量的相互作用机制是同质的; 需要对被试测量较多时间点
(LV-)GIMME 针对单个被试进行建模, 考虑个体内部的动态变化过程及机制的异质性; 适用于较多变量间的动态交互; 自动化搜索 可能出现模型过拟合; 无法将几乎不随时间变化的变量纳入模型; 需要对单个被试测量较多时间点



图6密集追踪数据方法的选择策略流程图
图6密集追踪数据方法的选择策略流程图







[1] 安媛媛, 徐慰. (2017). 雾霾和知觉压力加重疲劳感: 来自生态瞬时评估的证据. 中国临床心理学杂志, 25(6), 1130-1133.
[2] 陈明瑞, 周萍. (2017). 成瘾物质使用的生态瞬时评估与干预. 心理科学进展, 25(2), 247-252.
[3] 任杰, 金志成, 何慧. (2010). 日重现法在城市居民主观幸福感测量中的应用. 心理科学, 33(5), 1266-1269.
[4] 邵华, 陈奕荣, 郝思哲. (2019). 日常生活中的压力与应对: 一项生态瞬时评估研究. 中国临床心理学杂志, 27(3), 561-565.
[5] 唐文清, 张敏强, 方杰. (2020). 时变效应模型及在密集追踪数据分析中的应用. 心理科学, 43(2), 488-497.
[6] 张峰, 耿晓伟. (2015). 基于日重现法的农村居民幸福感研究: 情感体验的视角. 心理与行为研究, 13(3), 391-396.
[7] 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812- 1825.
[8] 张银普, 骆南峰, 石伟. (2016). 经验取样法:一种收集“真实”数据的新方法. 心理科学进展, 24(2), 305-316.
[9] 郑文倩, 潘康, 陈云云, 宋国萍. (2019). 基于日记法探索正念与限制性饮食:身体意象的中介作用. 心理技术与应用, 7(12), 735-745.
[10] Armstrong, B., Covington, L. B., Unick, G. J., & Black, M. M. (2019). Featured article: Bidirectional effects of sleep and sedentary behavior among toddlers: A dynamic multilevel modeling approach. Journal of Pediatric Psychology, 44(3), 275-285.
doi: 10.1093/jpepsy/jsy089pmid: 30476202
[11] Asparouhov, T. (2018). Dynamic structural equation modeling of intensive longitudinal data using Mplus Version 8. Retrieved June 2, 2020, from http://www.statmodel.com/download/Part%205%20Asparouhov.
[12] Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic latent class analysis. Structural Equation Modeling: A Multidisciplinary Journal, 24(2), 257-269.
doi: 10.1080/10705511.2016.1253479URL
[13] Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388.
doi: 10.1080/10705511.2017.1406803URL
[14] Asparouhov, T., & Muthén, B. (2019a). Latent variable centering of predictors and mediators in multilevel and time-series models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 119-142.
doi: 10.1080/10705511.2018.1511375URL
[15] Asparouhov, T., & Muthén, B. (2019b). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 1-23.
[16] Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp.1-39). New York, NY: Academic.
[17] Beltz, A. M., Beekman, C., Molenaar, P. C. M., & Buss, K. A. (2013). Mapping temporal dynamics in social interactions with unified structural equation modeling: A description and demonstration revealing time-dependent sex differences in play behavior. Applied Developmental Science, 17(3), 152-168.
doi: 10.1080/10888691.2013.805953URL
[18] Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. Multivariate Behavioral Research, 52(6), 789-804.
doi: 10.1080/00273171.2017.1373014URL
[19] Beltz, A. M., & Molenaar, P. C. M. (2015). A posteriori model validation for the temporal order of directed functional connectivity maps. Frontiers in Neuroscience, 9, 304.
[20] Beltz, A. M., & Molenaar, P. C. M. (2016). Dealing with multiple solutions in structural vector autoregressive models. Multivariate Behavioral Research, 51(2-3), 357-373.
doi: 10.1080/00273171.2014.969364URL
[21] Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. Assessment, 23(4), 447-458.
doi: 10.1177/1073191116648209URL
[22] Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54(1), 579-616.
doi: 10.1146/psych.2003.54.issue-1URL
[23] Bolger, N., & Laurenceau, J. P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. (pp. 1-9). New York: The Guilford Press
[24] Bouwmans, M. E. J., Beltz, A. M., Bos, E. H., Oldehinkel, A. J., de Jonge, P., & Molenaar, P. C. M. (2018). The person-specific interplay of melatonin, affect, and fatigue in the context of sleep and depression. Personality and Individual Differences, 123, 163-170.
doi: 10.1016/j.paid.2017.11.022URL
[25] Bringmann, L. F., Ferrer, E., Hamaker, E. L., Borsboom, D., & Tuerlinckx, F. (2018). Modeling nonstationary emotion dynamics in dyads using a time-varying vector- autoregressive model. Multivariate Behavioral Research, 53(3), 293-314.
doi: 10.1080/00273171.2018.1439722pmid: 29505311
[26] Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22(3), 409-425.
doi: 10.1037/met0000085pmid: 27668421
[27] Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological Methods, 45(4), 747-757.
[28] Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., & Kuppens, P. (2016). Assessing temporal emotion dynamics using networks. Assessment, 23, 425-435.
doi: 10.1177/1073191116645909pmid: 27141038
[29] Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., ... Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. Plos One, 8(4), e60188.
doi: 10.1371/journal.pone.0060188URL
[30] Chen, Y., & Zhang, S. (2020). A Latent Gaussian process model for analysing intensive longitudinal data. British Journal of Mathematical and Statistical Psychology, 73(2), 237-260.
doi: 10.1111/bmsp.v73.2URL
[31] Chow, S. -M., Lu, O., Cohn, J. F., & Messinger, D. S. (2017). Representing self-organization and non-stationarities in dyadic interaction processes using dynamic systems modeling techniques. In A. ovn Davier & P. Kyllonen (Eds.), Innovative assessment of collaboration (pp.269-286). New York, NY: Springer.
[32] Chun, C. A. (2016). The expression of posttraumatic stress symptoms in daily life: A review of experience sampling methodology and daily diary studies. Journal of Psychopathology and Behavioral Assessment, 38(3), 406-420.
doi: 10.1007/s10862-016-9540-3URL
[33] Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psychology, 57, 505-528.
[34] Cronin, M. A., & Vancouver, J. B. (2019). The only constant is change:Expanding theory by incorporating dynamic properties into one’s models. In S. E. Humphrey & J. M. LeBreton (Eds.), The handbook of multilevel theory, Measurement, and analysis (pp.89-114). Washington, DC: American Psychological Association.
[35] Csikszentmihalyi, M., & Larson, R. (2014). Validity and reliability of the experience-sampling method. In M. Csikszentmihalyi (Ed.), Flow and the foundations of positive psychology (pp.35-54). Dordrecht, The Netherlands: Springer Netherlands.
[36] Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62, 583-619.
doi: 10.1146/psych.2011.62.issue-1URL
[37] Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 22(3), 327-351.
doi: 10.1080/10705511.2014.937849URL
[38] Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22, 240-261.
doi: 10.1037/met0000065pmid: 26690773
[39] Epskamp, S., Deserno, M., & Bringmann, L. (2016). mlVAR: multi-level vector autoregression. R package version 0. 3.3.
[40] Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480.
doi: 10.1080/00273171.2018.1454823pmid: 29658809
[41] Ferrer, E., & Nesselroade, J. R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344-360.
doi: 10.1037/1528-3542.3.4.344URL
[42] Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subject research. Proceedings of the National Academy of Sciences, 115(27), E6106-E6115.
[43] Fisher, C. D., & To, M. L. (2012). Using experience sampling methodology in organizational behavior. Journal of Organizational Behavior, 33(7), 865-877.
doi: 10.1002/job.1803URL
[44] Foster, K. T., & Beltz, A. M. (2018). Advancing statistical analysis of ambulatory assessment data in the study of addictive behavior: A primer on three person-oriented techniques. Addictive Behaviors, 83, 25-34.
doi: 10.1016/j.addbeh.2017.12.018URL
[45] Fraley, R. C., & Hudson, N. W. (2014). Review of intensive longitudinal methods: An introduction to diary and experience sampling research. The Journal of Social Psychology, 154(1), 89-91.
doi: 10.1080/00224545.2013.831300URL
[46] Gates, K. M., Fisher, Z. F., & Bollen, K. A. (2020). Latent variable GIMME using model implied instrumental variables (MIIVs). Psychological Methods, 25(2), 227-242.
doi: 10.1037/met0000229URL
[47] Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129-148.
doi: 10.1080/00273171.2016.1256187URL
[48] Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63(1), 310-319.
doi: 10.1016/j.neuroimage.2012.06.026URL
[49] Gottfredson, N. C., Panter, A. T., Daye, C. E., Allen, W. F., & Wightman, L. F. (2009). The effects of educational diversity in a national sample of law students: Fitting multilevel latent variable models in data with categorical indicators. Multivariate Behavioral Research, 44, 305-331.
doi: 10.1080/00273170902949719pmid: 26754399
[50] Hamaker, E. L. (2017). Dynamic structural equation modeling of intensive longitudinal data using Mplus Version 8: Parts 1 and 2. Retrieved June 1, 2020, from https://www.statmodel.com/download/Aug17-18_JH_Slides.
[51] Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research, 53(6), 820-841.
doi: 10.1080/00273171.2018.1446819pmid: 29624092
[52] Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492.
[53] Hamaker, E. L., & Wichers, M. (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26, 10-15.
doi: 10.1177/0963721416666518URL
[54] Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press.
[55] Haslbeck, J. M. B., & Waldorp, L. J. (2020). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of Statistical Software, 93(8).
[56] Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford, B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the individual in the coming era of process-based therapy. Behaviour Research and Therapy, 117, 40-53.
doi: 10.1016/j.brat.2018.10.005URL
[57] Heck, R. H., & Thomas, S. L. (2015). An introduction to multilevel modeling techniques: MLM and SEM approaches using Mplus. (pp. 70-87). New York: Routledge.
[58] Henry, T. R., Feczko, E., Cordova, M., Earl, E., Williams, S., Nigg, J. T., ... Gates, K. M. (2019). Comparing directed functional connectivity between groups with confirmatory subgrouping GIMME. Neuroimage, 188, 642-653.
doi: 10.1016/j.neuroimage.2018.12.040URL
[59] Hofmans, J., de Clercq, B., Kuppens, P., Verbeke, L., & Widiger, T. A. (2019). Testing the structure and process of personality using ambulatory assessment data: An overview of within-person and person-specific techniques. Psychological Assessment, 31(4), 432-443.
doi: 10.1037/pas0000562pmid: 30869962
[60] Holtmann, J., Koch, T., Lochner, K., & Eid, M. (2016). A comparison of ML, WLSMV, and Bayesian methods for multilevel structural equation models in small samples: A simulation study. Multivariate Behavioral Research, 51(5), 661-680.
pmid: 27594086
[61] Howland, M., & Rafaeli, E. (2010). Bringing everyday mind reading into everyday life: Assessing empathic accuracy with daily diary data. Journal of Personality, 78(5), 1437-1468.
doi: 10.1111/jopy.2010.78.issue-5URL
[62] Jahng, S. (2008). Multilevel models for intensive longitudinal data with heterogeneous errors structure: Covariance transformation and variance function models, M.A. Thesis. University of Missouri.
[63] Jahng, S., & Wood, P. K. (2017). Multilevel models for intensive longitudinal data with heterogeneous autoregressive errors: The effect of misspecification and correction with Cholesky transformation. Frontiers in Psychology, 8, 262.
[64] Johnson, J. E., Burlingame, G. M., Olsen, J. A., Davies, D. R., & Gleave, R. L. (2005). Group climate, cohesion, alliance, and empathy in group psychotherapy: Multilevel structural equation models. Journal of Counseling Psychology, 52, 3l0-32l.
[65] Jongerling, J., Laurenceau, J. P., & Hamaker, E. L. (2015). A multilevel AR (1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334-349.
doi: 10.1080/00273171.2014.1003772pmid: 26610033
[66] Kelava, A., & Brandt, H. (2019). A nonlinear dynamic latent class structural equation model. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 509-528.
doi: 10.1080/10705511.2018.1555692URL
[67] Ke, Z., Zhang, Q., & Tong, X. (2019). Bayesian Meta-Analytic SEM: A one-stage approach to modeling between-studies heterogeneity in structural parameters. Structural Equation Modeling: A Multidisciplinary Journal, 26(3), 348-370.
doi: 10.1080/10705511.2018.1530059URL
[68] Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28(2), 85-93.
doi: 10.1002/(ISSN)1097-0193URL
[69] Kleiman, E. M., Glenn, C. R., & Liu, R. T. (2019). Real-time monitoring of suicide risk among adolescents: Potential barriers, possible solutions, and future directions. Journal of Clinical Child and Adolescent Psychology, 48(6), 934-946.
doi: 10.1080/15374416.2019.1666400pmid: 31560584
[70] Lane, S. T., Gates, K. M., Fisher, Z., Arizmendi, C., & Molenaar, P. (2020). Gimme: Group iterative multiple model estimation. Computer Software. Retrieved April 14, 2020, from https://CRAN.R-project.org/package=gimme
[71] Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. (2019). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological Methods, 24(1), 54.
doi: 10.1037/met0000192URL
[72] Lanza, S. T., Vasilenko, S. A., Liu, X. Y., Li, R., & Piper, M. E. (2014). Advancing the understanding of craving during smoking cessation attempts: A demonstration of the time-varying effect model. Nicotine & Tobacco Research, 16, S127-S134.
[73] Lau, Y., Tha, P. H., Wong, D. F. K., Wang, Y., Wang, Y., & Yobas, P. (2016). Different perceptions of stress, coping styles, and general well-being among pregnant Chinese women: A structural equation modeling approach. Archives of Women's Mental Health, 19(1), 71-78.
doi: 10.1007/s00737-015-0523-2URL
[74] Lazarevic, L. B., Bjekic, J., Zivanovic, M., & Knezevic, G. (2020). Ambulatory assessment of language use: Evidence on the temporal stability of electronically activated recorder and stream of consciousness data. Behavior Research Methods, 52, 1817-1835.
doi: 10.3758/s13428-020-01361-zURL
[75] Li, R., Root, T. L., & Shiffman, S. (2006). A local linear estimation procedure of functional multilevel modeling. In T. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp.63-83). New York, NY: Oxford University Press.
[76] Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229.
doi: 10.1037/a0012869URL
[77] Malmberg, L. -E., & Martin, A. J. (2019). Processes of students' effort exertion, competence beliefs and motivation: Cyclic and dynamic effects of learning experiences within school days and school subjects. Contemporary Educational Psychology, 58, 299-309.
doi: 10.1016/j.cedpsych.2019.03.013URL
[78] McNeish, D. (2017). Challenging conventional wisdom for multivariate statistical models with small samples. Review of Educational Research, 87, 1117-1151.
doi: 10.3102/0034654317727727URL
[79] McNeish, D. (2019). Two-level dynamic structural equation models with small samples. Structural Equation Modeling: A Multidisciplinary Journal, 26(6), 948-966.
doi: 10.1080/10705511.2019.1578657URL
[80] McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.
doi: 10.1037/met0000250URL
[81] Miller, M. B., & van Horn, J. D. (2007). Individual variability in brain activations associated with episodic retrieval: A role for large-scale databases. International Journal of Psychophysiology, 63(2), 205-213.
doi: 10.1016/j.ijpsycho.2006.03.019URL
[82] Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50(2), 181-202.
doi: 10.1007/BF02294246URL
[83] Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201-218.
[84] Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18, 112-117.
doi: 10.1111/j.1467-8721.2009.01619.xURL
[85] Molenaar, P. C. M., Rovine, M. J., & Corneal, S. E. (1999). Dynamic factor analysis of emotional dispositions of adolescent stepsons towards their stepfathers. In R. K. Silbereisen, & A. von Eye (Eds.). Growing up in times of social change (pp.287-318). Berlin, Germany: de Gruyter.
[86] Munsch, S., Meyer, A. H., Milenkovic, N., Schlup, B., Margraf, J., & Wilhelm, F. H. (2009). Ecological momentary assessment to evaluate cognitive-behavioral treatment for binge eating disorder. International Journal of Eating Disorders, 42(7), 648-657.
doi: 10.1002/eat.v42:7URL
[87] Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s Guide (Eighth Edition). Los Angeles, CA: Muthén & Muthén.
[88] Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 92-105). Washington, DC: American Psychological Association.
[89] Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the Econometric Society, 49(6), 1417-1426.
doi: 10.2307/1911408URL
[90] O’Brien, E., Coats, A., Owens, P., Petrie, J., Padfield, P. L., Littler, W. A., ... Mee, F. (2000). Use and interpretation of ambulatory blood pressure monitoring: Recommendations of the British Hypertension Society. British Medical Journal, 320(7242), 1128-1134.
doi: 10.1136/bmj.320.7242.1128URL
[91] Piccirillo, M. L., & Rodebaugh, T. L. (2019). Foundations of idiographic methods in psychology and applications for psychotherapy. Clinical Psychology Review, 71, 90-100.
doi: S0272-7358(18)30301-5pmid: 30665765
[92] Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15(3), 209-233.
doi: 10.1037/a0020141URL
[93] Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel structural equation modeling. In S. -Y. Lee (Ed.), Handbook of latent variable and related models (pp.209-227). Amsterdam, The Netherlands: Elsevier.
[94] Racine, N., Plamondon, A., Hentges, R., Tough, S., & Madigan, S. (2019). Dynamic and bidirectional associations between maternal stress, anxiety, and social support: The critical role of partner and family support. Journal of Affective Disorders, 252, 19-24.
doi: 10.1016/j.jad.2019.03.083URL
[95] Reis, H. T., Gable, S. L., & Maniaci, M. R. (2014). Methods for studying everyday experience in its natural context. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd edition, pp. 373-403). New York: Cambridge University Press.
[96] Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495-515.
doi: 10.1080/10705511.2017.1392862URL
[97] Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L., (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological Methods, 21(2), 206-221.
doi: 10.1037/met0000062pmid: 27045851
[98] Schuurman, N. K., Grasman, R. P. P. P., & Hamaker, E. L. (2016). A comparison of inverse-Wishart prior specifications for covariance matrices in multilevel autoregressive models. Multivariate Behavioral Research, 51(2-3), 185-206.
doi: 10.1080/00273171.2014.969364URL
[99] Schwartz, J. E., Stone, A. A., Shiffman, S., & Atienza, A. A. (2007). The analysis of real-time momentary data:A practical guide. In A. Stone, S. Shiffman, A. Arienza, & L. Nebeling (Eds.), The science of real-time data capture: Self-reports in health research. New York: Oxford University Press.
[100] Sened, H., Lazarus, G., Gleason, M. E. J., Rafaeli, E., & Fleeson, W. (2018). The use of intensive longitudinal methods in explanatory personality research. European Journal of Personality, 32(3), 269-285.
doi: 10.1002/per.2143URL
[101] Setodji, C. M., Martino, S. C., Dunbar, M. S., & Shadel, W. G. (2019, April 18). An exponential effect persistence model for intensive longitudinal data. Psychological Methods. Advance Online Publication. 24(5), 622-636.
[102] Shiffman, S. (2009). Ecological momentary assessment (EMA) in studies of substance use. Psychological Assessment, 21(4), 486-497.
doi: 10.1037/a0017074pmid: 19947783
[103] Shiyko, M. P., Li, Y., & Rindskopf, D. (2012). Poisson growth mixture modeling of intensive longitudinal data: An application to smoking cessation behavior. Structural Equation Modeling: A Multidisciplinary Journal, 19(1), 65-85.
doi: 10.1080/10705511.2012.634722URL
[104] Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67-77.
doi: 10.1080/00273171.2013.851018URL
[105] Spencer, J. P., & Schöner, G. (2003). Bridging the representational gap in the dynamic systems approach to development. Developmental Science, 6, 392-412.
doi: 10.1111/desc.2003.6.issue-4URL
[106] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-616.
doi: 10.1111/rssb.2002.64.issue-4URL
[107] Stone, A. A., & Shiffman, S. (1994). Ecological momentary assessment (EMA) in behavorial medicine. Annals of Behavioral Medicine, 16, 199-202.
doi: 10.1093/abm/16.3.199URL
[108] Stone, A. A., Shiffman, S. S., & DeVries, M. W. (1999). Ecological momentary assessment. In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well being: The foundations of hedonic psychology (pp.26-39). New York, NY: Russell Sage Foundation.
[109] Sturgeon, J. A., Zautra, A. J., & Arewasikporn, A. (2014). A multilevel structural equation modeling analysis of vulnerabilities and resilience resources influencing affective adaptation to chronic pain. Pain, 155(2), 292- 298.
doi: 10.1016/j.pain.2013.10.007pmid: 24120460
[110] Tennen, H., Affleck, G., Armeli, S., & Carney, M. A. (2000). A daily process approach to coping: Linking theory, research, and practice. American Psychologist, 55(6), 626-636.
pmid: 10892205
[111] Tong, X., & Zhang, Z. (2012). Diagnostics of robust growth curve modeling using student’s t distribution. Multivariate Behavioral Research, 47(4), 493-518.
doi: 10.1080/00273171.2012.692614pmid: 26777667
[112] Trull, T. J., & Ebner-Priemer, U. W. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9, 151-176.
doi: 10.1146/clinpsy.2013.9.issue-1URL
[113] Trull, T. J., & Ebner-Priemer, U. W. (2014). The role of ambulatory assessment in psychological science. Current Directions in Psychological Science, 23(6), 466-470.
doi: 10.1177/0963721414550706URL
[114] Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective instability: Measuring a core feature of borderline personality disorder with ecological momentary assessment. Journal of Abnormal Psychology, 117(3), 647-661.
doi: 10.1037/a0012532URL
[115] Turner, A. E., & Hayes, S. C. (1996). A comparison of response covariation viewed idiothetically and nomothetically. Psicologia Conductual, 4, 231-250.
[116] Vallacher, R. R., Read, S. J., & Nowak, A. (2002). The dynamical perspective in personality and social psychology. Personality and Social Psychology Review, 6, 264-273.
doi: 10.1207/S15327957PSPR0604_01URL
[117] van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan- Zwijnenburg, M., & van Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6, 25216.
doi: 10.3402/ejpt.v6.25216pmid: 25765534
[118] van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & van Aken, M. A. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85, 842-860.
doi: 10.1111/cdev.12169pmid: 24116396
[119] van Roekel, E., Keijsers, L., & Chung, J. M. (2019). A review of current ambulatory assessment studies in adolescent samples and practical recommendations. Journal of Research on Adolescence, 29(3), 560-577.
doi: 10.1111/jora.12471pmid: 31573762
[120] Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53(6), 782-805.
doi: 10.1080/00273171.2018.1496813pmid: 30668172
[121] Walls, T. A., & Schafer, J. L. (2006). Models for intensive longitudinal data. New York, NY: Oxford University Press.
[122] Walls, T. A., Hoppner, B., & Goodwin, M. (2007). Statistical issues in intensive longitudinal data analysis. In A. A. Stone, S. Shiffman, A. A. Atienza, & L. Nebeling (Eds.), The science of real-time data capture: Self-reports in health research (pp.338-360). New York, NY: Oxford University Press.
[123] Weinstock, J., Farney, M. R., Elrod, N. M., Henderson, C. E., & Weiss, E. P. (2017). Exercise as an adjunctive treatment for substance use disorders: Rationale and intervention description. Journal of Substance Abuse Treatment, 72, 40-47.
doi: S0740-5472(16)30094-0pmid: 27666958
[124] West, S. G. (2018). Opportunities and issues in modeling intensive longitudinal data: Learning from the COGITO project. Multivariate Behavioral Research, 53(6), 777-781.
doi: 10.1080/00273171.2018.1545631URL
[125] Windt, J., Ardern, C. L., Gabbett, T. J., Khan, K. M., Cook, C. E., Sporer, B. C., & Zumbo, B. D. (2018). Getting the most out of intensive longitudinal data: A methodological review of workload-injury studies. BMJ Open, 8(10), e022626.
doi: 10.1136/bmjopen-2018-022626URL
[126] Woods, W. C., Arizmendi, C., Gates, K. M., Stepp, S. D., Pilkonis, P. A., & Wright, A. G. C. (2020). Personalized models of psychopathology as contextualized dynamic processes: An example from individuals with borderline personality disorder. Journal of Consulting and Clinical Psychology, 88(3), 240-254.
doi: 10.1037/ccp0000472URL
[127] Wright, A. G. C., Hallquist, M. N., Stepp, S. D., Scott, L. N., Beeney, J. E., Lazarus, S. A., & Pilkonis, P. A. (2016). Modeling heterogeneity in momentary interpersonal and affective dynamic processes in borderline personality disorder. Assessment, 23, 484-495.
doi: 10.1177/1073191116653829pmid: 27317561
[128] Wright, A. G. C., Hopwood, C. J., & Simms, L. J. (2015). Daily interpersonal and affective dynamics in personality disorder. Journal of Personality Disorders, 29, 503-525.
doi: 10.1521/pedi.2015.29.4.503pmid: 26200849
[129] Wright, A. G. C., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology, 16, 49-74.
doi: 10.1146/annurev-clinpsy-102419-125032pmid: 32070120
[130] Zhang, J., & Zheng, Y. (2019). Neuroticism and extraversion are differentially related to between- and within-person variation of daily negative emotion and physical symptoms. Personality and Individual Differences, 141, 138-142.
doi: 10.1016/j.paid.2019.01.003URL
[131] Zhang, Z. Y. (2013). Bayesian growth curve models with the generalized error distribution. Journal of Applied Statistics, 40(8), 1779-1795.
doi: 10.1080/02664763.2013.796348URL
[132] Zhang, Z. Y., Lai, K., Lu, Z., & Tong, X. (2013). Bayesian inference and application of robust growth curve models using student’s t distribution. Structural Equation Modeling: A Multidisciplinary Journal, 20(1), 47-78.
doi: 10.1080/10705511.2013.742382URL
[133] Zhang, Z. Y., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729-756.
doi: 10.1080/00273170701715998URL
[134] Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive longitudinal data analyses with dynamic structural equation modeling. Organizational Research Methods, 24(2), 219-250. https://doi.org/10.1177/1094428119833164
doi: 10.1177/1094428119833164URL
[135] Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017). Where do priors come from? Applying guidelines to construct informative priors in small sample research. Research in Human Development, 14, 305-320.
doi: 10.1080/15427609.2017.1370966URL




[1]张权;陈崝;王玮文;邓慧华. 创伤后应激障碍患者的HPA轴功能变化的时间序列特征[J]. 心理科学进展, 2016, 24(4): 536-546.
[2]焦璨;熊敏平;张敏强
. 心理学研究数据类型与统计方法——谈函数型数据分析的引入[J]. 心理科学进展, 2010, 18(8): 1314-1320.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5616
相关话题/测量 数据 心理 科学 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 教与学的大脑:人际神经科学助推教育研究
    成晓君1,刘美焕1,潘亚峰2,李红1()1深圳大学心理学院,深圳5180602卡罗琳斯卡医学院临床神经科学系,斯德哥尔摩,瑞典收稿日期:2020-11-06出版日期:2021-11-15发布日期:2021-09-23通讯作者:李红E-mail:lihongszu@szu.edu.cn基金资助:国家自 ...
    本站小编 Free考研考试 2022-01-01
  • 品牌消费旅程中消费者的认知心理过程——神经营销学视角
    谢莹1,刘昱彤1,陈明亮2(),梁安迪31西北大学经济管理学院,西安7101272浙江大学管理学院,杭州3100583西北大学公共管理学院,西安710127收稿日期:2020-08-06出版日期:2021-11-15发布日期:2021-09-23通讯作者:陈明亮E-mail:chenml@zju.e ...
    本站小编 Free考研考试 2022-01-01
  • 从个体到集体:心理学视角下的集体记忆
    葛耀君1,2,李海3()1上海工程技术大学体育教学部,上海2016202上海体育学院休闲学院,上海2004383上海体育学院经济管理学院,上海200438收稿日期:2020-09-21出版日期:2021-11-15发布日期:2021-09-23通讯作者:李海E-mail:786214335@qq.c ...
    本站小编 Free考研考试 2022-01-01
  • 概率估计的趋势效应及其对决策的影响机制——基于心理动量的视角
    熊冠星1,叶金明1,孙海龙2()1华南师范大学经济与管理学院,广州5100062广东外语外贸大学商学院,广州510006收稿日期:2021-03-12出版日期:2021-11-15发布日期:2021-09-23通讯作者:孙海龙E-mail:sunhailong@gdufs.edu.cn基金资助:国家 ...
    本站小编 Free考研考试 2022-01-01
  • 心理病理学网络理论、方法与挑战
    陈琛,王力(),曹成琦,李根中国科学院心理研究所心理健康重点实验室创伤应激研究实验室,北京100101中国科学院大学心理学系,北京100049收稿日期:2021-03-30出版日期:2021-10-15发布日期:2021-08-23通讯作者:王力E-mail:wangli1@psych.ac.cn基 ...
    本站小编 Free考研考试 2022-01-01
  • 时间与金钱概念对消费者购买决策的不同影响及其心理机制
    贺汝婉1,李斌1,2(),张淑颖1,崔馨月1,雷励11暨南大学管理学院,广州5106322暨南大学企业发展研究所,广州510632收稿日期:2020-11-02发布日期:2021-07-22通讯作者:李斌E-mail:bingoli@jnu.edu.cn基金资助:国家自然科学基金项目(7160108 ...
    本站小编 Free考研考试 2022-01-01
  • 新世纪20年国内心理统计方法研究回顾
    温忠麟1(),方杰2,沈嘉琦1,谭倚天1,李定欣1,马益铭11华南师范大学心理学院/心理应用研究中心,广州5106312广东财经大学人文与传播学院,广州510320收稿日期:2021-03-11发布日期:2021-06-25通讯作者:温忠麟E-mail:wenzl@scnu.edu.cn基金资助:国 ...
    本站小编 Free考研考试 2022-01-01
  • 心理与教育测验中异常作答处理的新技术: 混合模型方法
    刘玥1,刘红云2,3()1四川师范大学脑与心理科学研究院,成都6100662应用实验心理北京市重点实验室3北京师范大学心理学部,北京100875收稿日期:2020-10-23发布日期:2021-07-22通讯作者:刘红云E-mail:hyliu@bnu.edu.cn基金资助:国家自然科学基金项目(3 ...
    本站小编 Free考研考试 2022-01-01
  • 情绪自旋及其心理健康功能
    张珊珊(),王婧怡,李昱汝天津职业技术师范大学职业教育学院,天津300222收稿日期:2020-07-20发布日期:2021-06-25通讯作者:张珊珊E-mail:zhangss945@126.com基金资助:天津市哲学社会科学规划项目(TJJX20-020)Affectspinanditsimp ...
    本站小编 Free考研考试 2022-01-01
  • 老年人的消极交往与心理健康
    徐潞杰1,2,张镇1,2()1中国科学院心理研究所行为科学院重点实验室,北京1001012中国科学院大学心理学系,北京100049收稿日期:2020-12-07发布日期:2021-06-25通讯作者:张镇E-mail:zhangz@psych.ac.cn基金资助:国家自然科学基金项目(7177415 ...
    本站小编 Free考研考试 2022-01-01