1北京体育大学心理学院, 北京 100084
2成都体育学院小球系, 成都 610041
3中国民航大学乘务学院, 天津 300300
收稿日期:
2020-04-29出版日期:
2021-04-15发布日期:
2021-02-22基金资助:
国家科技冬奥重点研发计划项目(2019YFF0301600)The filtering efficiency in visual working memory
ZHANG Zhao1,2, ZHANG Liwei1(), GONG Ran1,31School of Psychology, Beijing Sport University, Beijing 100084, China
2Faculty of Table Tennis, Badminton and Tennis, Chengdu Sport University, Chengdu 610041, China
3College of Cabin Attendant, Civil Aviation University of China, Tianjin 300300, China
Received:
2020-04-29Online:
2021-04-15Published:
2021-02-22Supported by:
National Key Technology R&D Program of China(2019YFF0301600)摘要/Abstract
摘要: 过滤效能反映了视觉工作记忆的干扰抑制功能, 研究者可基于储存容量或表征精度对其进行测量, 其神经加工过程主要分为觉察分心项目、过滤启动、实现过滤或储存, 涉及前额叶皮层和基底核、后顶叶皮层的协同作用。过滤效能的变化方向受到年龄、特殊障碍、情绪、认知特点等因素的影响。未来研究仍需解决的问题包括厘清过滤效能与工作记忆容量的关系, 辨明过滤效能的心理实现过程, 探索不同年龄、特殊障碍和职业等群体过滤效能的脑机制以及提升基础研究范式的生态学效度。
参考文献 113
[1] | 高在峰, 郁雯珺, 徐晓甜, 尹军, 水仁德, 沈模卫. (2012). 对侧延迟活动: 视觉工作记忆信息存储的ERP指标. 科学通报, 57(30),2806-2814. doi: https://doi.org/10.1360/972012-728. |
[2] | 郭恒, 何莉, 周仁来. (2016). 经颅直流电刺激提高记忆功能. 心理科学进展, 24(3),356-366. doi: https://doi.org/10.3724/sp.j.1042.2016.00356. |
[3] | 何旭, 郭春彦. (2013). 视觉工作记忆的容量与资源分配. 心理科学进展, 21(10),1741-1748. doi: https://doi.org/10.3724/sp.j.1042.2013.01741. |
[4] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1),173-185. doi: https://doi.org/10.13294/j.aps.2019.0004. |
[5] | 梁怡雯. (2016). 工作记忆加工中抑制干扰的神经机制研究. (硕士学位论文). 华东师范大学, 上海. |
[6] | 刘志英, 库逸轩. (2017). 知觉表征精度对工作记忆中抑制干扰能力的影响. 心理学报, 49(10),1247-1255. |
[7] | 龙芳芳. (2018). 负性情绪状态对视觉工作记忆资源分配及过滤效率的影响. (硕士学位论文). 辽宁师范大学, 沈阳. |
[8] | 冉雪梅. (2017). 精神分裂症患者的视觉工作记忆损伤:来自行为和脑电的证据. (硕士学位论文). 华东师范大学, 上海. |
[9] | 世界卫生组织. (2018). 道路交通伤害. 2018-12-07取自 https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries. |
[10] | 王思思. (2019). 视觉工作记忆的存储和干扰抑制的神经机制. (博士学位论文). 华东师范大学, 上海. |
[11] | 王思思, 库逸轩. (2018). 右侧背外侧前额叶在视觉工作记忆中的因果性作用. 心理学报, 50(7),727-738. doi: https://doi.org/10.3724/sp.j.1041.2018.00727. |
[12] | 魏萍, 康冠兰. (2012). 奖赏性线索启动和调控视觉搜索额顶网络的神经机制. 心理科学进展, 20(6),798-804. |
[13] | 张宁宁. (2012). 基于神经人因学的人—车交互系统若干问题的研究. (博士学位论文). 东北大学, 沈阳. |
[14] | Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 40(6),1499-1509. doi: https://doi.org/10.1037/xlm0000002. |
[15] | Allon, A. S., & Luria, R. (2017). Compensation mechanisms that improve distractor filtering are shortlived. Cognition, 164,74-86. URLpmid: 28391134 |
[16] | Allon, A. S., & Luria, R. (2019). Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Psychophysiology, 56(5), Article e13323. doi: https://doi.org/10.1111/psyp.13323. doi: 10.1111/psyp.13323URLpmid: 30609072 |
[17] | Allon, A. S., Vixman, G., & Luria, R. (2019). Gestalt grouping cues can improve filtering performance in visual working memory. Psychological Research, 83(8),1656-1672. doi: https://doi.org/10.1007/s00426-018-1032-5. URLpmid: 29845437 |
[18] | Arciniega, H., G?zenman, F., Jones, K. T., Stephens, J. A., & Berryhill, M. E. (2018). Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Frontiers in Aging Neuroscience, 10, Article e00057. doi: https://doi.org/10.3389/fnagi.2018.00057. URLpmid: 30620773 |
[19] | Astle, D. E., Harvey, H., Stokes, M., Mohseni, H., Nobre, A. C., & Scerif, G. (2014). Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 56(4),601-610. doi: https://doi.org/10.1002/dev.21126. URLpmid: 23775219 |
[20] | Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1),5-6. doi: https://doi.org/10.1038/nn0108-5. URLpmid: 18160954 |
[21] | Baier, B., Müller, N. G., & Dieterich, M. (2014). What part of the cerebellum contributes to a visuospatial working memory task? Annals of Neurology, 76(5),754-757. doi: https://doi.org/10.1002/ana.24272. URLpmid: 25220347 |
[22] | Bodner, K. E., Cowan, N., & Christ, S. E. (2019). Contributions of filtering and attentional allocation to working memory performance in individuals with autism spectrum disorder. Journal of Abnormal Psychology, 128(8),881-891. doi: https://doi.org/10.1037/abn0000471. URLpmid: 31599633 |
[23] | Buelow, M. T., Okdie, B. M., Brunell, A. B., & Trost, Z. (2015). Stuck in a moment and you cannot get out of it: The lingering effects of ostracism on cognition and satisfaction of basic needs. Personality and Individual Differences, 76,39-43. |
[24] | Christ, S. E., Kester, L. E., Bodner, K. E., & Miles, J. H. (2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25(6),690-701. doi: https://doi.org/dx.doi.org/10.1037/a0024256. URLpmid: 21728431 |
[25] | Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30(2),203-216. doi: https://doi.org/10.1016/j.cpr.2009.11.003. URLpmid: 20005616 |
[26] | Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3),201-215. doi: https://doi.org/10.1038/nrn755. URLpmid: 11994752 |
[27] | Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34(8),1754-1768. doi: 10.3758/bf03195936URLpmid: 17489300 |
[28] | Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1),114-185. |
[29] | D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1),115-142. doi: https://doi.org/10.1146/annurev-psych-010814-015031. |
[30] | di Rosa, E., Brigadoi, S., Cutini, S., Tarantino, V., Dell'Acqua, R., Mapelli, D., … Vallesi, A. (2019). Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. NeuroImage, 202, Article e116062. doi: https://doi.org/10.1016/j.neuroimage.2019.116062. URLpmid: 31473355 |
[31] | Doehnert, M., Brandeis, D., Imhof, K., Drechsler, R., & Steinhausen, H. C. (2010). Mapping attention-deficit/ hyperactivity disorder from childhood to adolescence—No neurophysiologic evidence for a developmental lag of attention but some for inhibition. Biological Psychiatry, 67(7),608-616. doi: https://doi.org/10.1016/j.biopsych.2009.07.038. URLpmid: 19811774 |
[32] | Drummond, S.P. A., Anderson, D. E., Straus, L. D., Vogel, E. K., & Perez, V. B. (2012). The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency. Plos One, 7(4), Article e0035653. doi: https://doi.org/10.1371/journal.pone.0035653. doi: 10.1371/journal.pone.0036036URLpmid: 22563436 |
[33] | Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10),1843-1854. doi: https://doi.org/10.1037/xhp0000428. |
[34] | Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11),820. URLpmid: 11715058 |
[35] | Emrich, S. M., & Busseri, M. A. (2015). Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity. Cognitive, Affective and Behavioral Neuroscience, 15(3),589-597. doi: https://doi.org/10.3758/s13415-015-0341-z. doi: 10.3758/s13415-015-0341-zURLpmid: 25690338 |
[36] | Engel, A. K. (2012). Rules got rhythm. Neuron, 76(4),673-676. doi: https://doi.org/10.1016/j.neuron.2012.11.003. doi: 10.1016/j.neuron.2012.11.003URLpmid: 23177954 |
[37] | Feldmann-Wüstefeld, T.,& Edward K. Vogel. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex, 29(2),529-543. |
[38] | Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3(1),1228-1246. doi: https://doi.org/10.1038/ncomms2237. |
[39] | Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30(2),319-333. doi: 10.1016/s0896-6273(01)00285-9URLpmid: 11394996 |
[40] | Gaspar, J. M., Christie, G. J., Prime, D. J., Jolic?ur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13),3693-3698. |
[41] | Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D'Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35),13122-13126. |
[42] | Ge, Y., Sheng, B. Y., Qu, W. N., Xiong, Y. X., Sun, X., & Zhang, K. (2020). Differences in visual-spatial working memory and driving behavior between morning-type and evening-type drivers. Accident Analysis and Prevention, 136, Article e105402. doi: https://doi.org/10.1016/j.aap.2019. 105402. URLpmid: 31874332 |
[43] | Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun, E. L., & Luck, S. J. (2006). Intact attentional control of working memory encoding in schizophrenia. Journal of Abnormal Psychology, 115(4),658-673. doi: https://doi.org/10.1037/0021-843X.115.4.658. URLpmid: 17100524 |
[44] | Hadar, B., Luria, R., & Liberman, N. (2019a). Induced social power improves visual working memory. Personality and Social Psychology Bulletin, 46(2),285-297. doi: https://doi.org/10.1177/0146167219855045. URLpmid: 31189437 |
[45] | Hadar, B., Luria, R., & Liberman, N. (2019b). Concrete mindset impairs filtering in visual working memory. Psychonomic Bulletin & Review, 26(6),1917-1924. doi: https://doi.org/10.3758/s13423-019-01625-6. doi: 10.3758/s13423-019-01625-6URLpmid: 31429059 |
[46] | Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. The Psychology of Learning and Motivation, 22,193-225. |
[47] | Hawes, D. J., Zadro, L., Fink, E., Richardson, R., O'Moore, K., Griffiths, B., & Williams, K. D. (2012). The effects of peer ostracism on children's cognitive processes. European Journal of Developmental Psychology, 9(5),599-613. |
[48] | Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485),1601-1613. doi: https://doi.org/10.1098/rstb.2007.2055. |
[49] | Heimrath, K., Sandmann, P., Becke, A., Müller, N. G., & Zaehle, T. (2012). Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Frontiers in Psychiatry, 3, Article e00056. doi: https://doi.org/10.3389/fpsyt.2012.00056. URLpmid: 23162480 |
[50] | Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S. -K., & Juan, C.-H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage, 98,306-313. doi: https://doi.org/10.1016/j.neuroimage.2014.04.069. URLpmid: 24807400 |
[51] | Jia, S., Zhang, Q., & Li, S. (2014). Field dependence- independence modulates the efficiency of filtering out irrelevant information in a visual working memory task. Neuroscience, 278,136-143. doi: https://doi.org/10.1016/j.neuroscience.2014.07.075. doi: 10.1016/j.neuroscience.2014.07.075URLpmid: 25135352 |
[52] | Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. J.… Gold, J. M. (2013). The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology, 27(2),220-229. doi: https://doi.org/10.1037/a0032060. URLpmid: 23527650 |
[53] | Jones, K. T., & Berryhill, M. E. (2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, Article e00081. doi: https://doi.org/10.3389/fpsyt.2012.00081. URLpmid: 23162480 |
[54] | Jones, K. T., G?zenman, F., & Berryhill, M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage, 105,238-247. doi: https://doi.org/10.1016/j.neuroimage.2014.11.012. URLpmid: 25462798 |
[55] | Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5),1147-1154. doi: https://doi.org/10.1093/cercor/bhq185. URLpmid: 20884722 |
[56] | Jost, K., & Mayr, U. (2016). Switching between filter settings reduces the efficient utilization of visual working memory. Cognitive, Affective and Behavioral Neuroscience, 16(2),207-218. doi: https://doi.org/10.3758/s13415-015-0380-5. URLpmid: 26450507 |
[57] | Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2007). fMRI investigation of working memory for faces in autism?: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2),289-300. doi: https://doi.org/10.1093/cercor/bhm054. URLpmid: 17517680 |
[58] | Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclán, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133(9),2677-2689. doi: https://doi.org/10.1093/brain/awq197. URLpmid: 20688815 |
[59] | Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C., & Xue, G. (2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage, 149,210-219. doi: https://doi.org/10.1016/j.neuroimage.2017.01.061. URLpmid: 28131893 |
[60] | Liberman, N., & Trope, Y. (2008). The psychology of transcending the here and now. Science, 322(5905),1201-1205. URLpmid: 19023074 |
[61] | Liberman, N., & Trope, Y. (2014). Traversing psychological distance. Trends in Cognitive Sciences, 18(7),364-369. URLpmid: 24726527 |
[62] | Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2014). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2),325-333. doi: https://doi.org/10.1177/0956797613501170. doi: 10.1177/0956797613501170URLpmid: 24379152 |
[63] | Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8),391-400. doi: https://doi.org/10.1016/j.tics.2013.06.006. doi: 10.1016/j.tics.2013.06.006URLpmid: 23850263 |
[64] | Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62,100-108. doi: https://doi.org/10.1016/j.neubiorev.2016.01.003. URLpmid: 26802451 |
[65] | Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3),347-356. doi: https://doi.org/10.1038/nn.3655. URLpmid: 24569831 |
[66] | Mall, J. T., Morey, C. C., Wolff, M. J., & Lehnert, F. (2014). Visual selective attention is equally functional for individuals with low and high working memory capacity: Evidence from accuracy and eye movements. Attention, Perception, and Psychophysics, 76(7),1998-2014. doi: https://doi.org/10.3758/s13414-013-0610-2. |
[67] | Manza, P., Hau, C.L. V., & Leung, H.-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17),5998-6002. doi: https://doi.org/10.1523/JNEUROSCI.4641-13.2014. URLpmid: 24760858 |
[68] | McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1),103-107. doi: https://doi.org/10.1038/ nn2024. URLpmid: 18066057 |
[69] | Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2),81-97. URLpmid: 13310704 |
[70] | Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8),831-864. doi: https://doi.org/10.1037/bul0000051. URLpmid: 26963369 |
[71] | Moriya, J., & Sugiura, Y. (2012). High visual working memory capacity in trait social anxiety. Plos One, 7(4), Article e0034244. doi: https://doi.org/10.1371/journal.pone.0034244. |
[72] | Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3),633-639. doi: https://doi.org/10.1111/j.1469-7793.2000.t01-1- 00633.x. |
[73] | O'luanaigh, C., O'connell, H., Chin, A.-V., Hamilton, F., Coen, R., Walsh, C., & Lawlor, B. A.(2012). Loneliness and cognition in older people: The dublin healthy ageing study. Aging Ment Health, 16(3),347-352. URLpmid: 22129350 |
[74] | Owens, M., Koster, E. H. W., & Derakshan, N. (2012). Impaired filtering of irrelevant information in dysphoria: An ERP study. Social Cognitive and Affective Neuroscience, 7(7),752-763. doi: https://doi.org/10.1093/scan/nsr050. URLpmid: 21896495 |
[75] | Owens, M., Koster, E.H. W., & Derakshan, N. (2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50(3),297-307. doi: https://doi.org/10.1111/psyp.12010. doi: 10.1111/psyp.12010URLpmid: 23350956 |
[76] | Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4),369-378. |
[77] | Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuro Report, 17,478-491. |
[78] | Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10),3990-3998. doi: https://doi.org/10.1523/jneurosci.23-10-03990.2003. URLpmid: 12764083 |
[79] | Peverill, M., McLaughlin, K. A., Finn, A. S., & Sheridan, M. A. (2016). Working memory filtering continues to develop into late adolescence. Developmental Cognitive Neuroscience, 18,78-88. doi: https://doi.org/10.1016/j.dcn.2016.02.004. doi: 10.1016/j.dcn.2016.02.004URLpmid: 27026657 |
[80] | Plebanek, D. J., & Sloutsky, V. M. (2019). Selective attention, filtering, and the development of working memory. Developmental Science, 22(1), Article e12727. doi: https://doi.org/10.1111/desc.12727. doi: 10.1111/desc.12717URLpmid: 30105854 |
[81] | Pope, P. A., Brenton, J. W., & Miall, R. C. (2015). Task- specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cerebral Cortex, 25(11),4551-4558. |
[82] | Pratte, M. S., Park, Y. E., Rademaker, R. L., & Tong, F. (2017). Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 43(1),6-17. doi: https://doi.org/10.1037/xhp0000302. doi: 10.1037/xhp0000302URLpmid: 28004957 |
[83] | Qi, S. Q., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective and Behavioral Neuroscience, 14(1),253-265. doi: https://doi.org/10.3758/s13415-013-0203-5. doi: 10.3758/s13415-013-0203-5URLpmid: 23963822 |
[84] | Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393(6685),577-579. |
[85] | Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9),940-945. URLpmid: 10966626 |
[86] | Robison, M. K., McGuirk, W. P., & Unsworth, N. (2017). No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behavioral Neuroscience, 131(4),277-288. doi: https://doi.org/10.1037/bne0000202. URLpmid: 28714714 |
[87] | Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2),324-330. URLpmid: 21331668 |
[88] | Ruff, C. C. (2013). Sensory processing: Who's in top-down control? Annals of the New York Academy of Sciences, 1296,88-107. |
[89] | Sandrini, M., Rossini, P. M., & Miniussi, C. (2008). Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia, 46(7),2056-2063. doi: https://doi.org/10.1016/j.neuropsychologia.2008.02.003. doi: 10.1016/j.neuropsychologia.2008.02.003URLpmid: 18336847 |
[90] | Schmicker, M., Schwefel, M., Vellage, A. -K., & Müller, N. G. (2016). Training of attentional filtering, but not of memory storage, enhances working memory efficiency by strengthening the neuronal gatekeeper network. Journal of Cognitive Neuroscience, 28(4),636-642. doi: https://doi.org/10.1162/jocn. |
[91] | Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3),245-276. |
[92] | Spronk, M., Vogel, E. K., & Jonkman, L. M. (2012). Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. Plos One, 7(8), Article e0042262. doi: https://doi.org/10.1371/journal.pone.0042262. URLpmid: 22957000 |
[93] | Spronk, M., Vogel, E. K., & Jonkman, L. M. (2013). No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. Plos One, 8(5), Article e0062673. doi: https://doi.org/10.1371/journal.pone.0062673. URLpmid: 23741516 |
[94] | Sternberg, N., Luria, R., & Sheppes, G. (2018). For whom is social-network usage associated with anxiety? The moderating role of neural working-memory filtering of Facebook information. Cognitive, Affective and Behavioral Neuroscience, 18(6),1145-1158. doi: https://doi.org/10.3758/ s13415-018-0627-z. doi: 10.3758/s13415-018-0627-zURLpmid: 30094562 |
[95] | Stout, D. M., & Rokke, P. D. (2010). Components of working memory predict symptoms of distress. Cognition and Emotion, 24(8),1293-1303. doi: https://doi.org/10.1080/02699930903309334. |
[96] | Stout, D. M., Shackman, A. J., Johnson, J. S., & Larson, C. L. (2015). Worry is associated with impaired gating of threat from working memory. Emotion, 15(1),6-11. doi: https://doi.org/10.1037/emo0000015. URLpmid: 25151519 |
[97] | Stout, D. M., Shackman, A. J., & Larson, C. L. (2013). Failure to filter: Anxious individuals show inefficient gating of threat from working memory. Frontiers in Human Neuroscience, 7, Article e00058. doi: https://doi.org/10.3389/fnhum.2013.00058. URLpmid: 24431994 |
[98] | Thiruchselvam, R., Hajcak, G., & Gross, J. J. (2012). Looking inward: Shifting attention within working memory representations alters emotional responses. Psychological Science, 23(12),1461-1466. doi: https://doi.org/10.1177/0956797612449838. URLpmid: 23137969 |
[99] | Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O.J. L., Hung, D. L., Muggleton, N. G.… Juan, C.-H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31),10554-10561. doi: https://doi.org/10.1523/JNEUROSCI.0362-12.2012. URLpmid: 22855805 |
[100] | van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1),124-149. doi: https://doi.org/10.1037/a0035234. URLpmid: 24490791 |
[101] | van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22),8780-8785. doi: https://doi.org/10.1073/ pnas.1117465109. doi: 10.1073/pnas.1117465109URLpmid: 22582168 |
[102] | Vellage, A.-K., Becke, A., Strumpf, H., Baier, B., Sch?nfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), Article e00544. doi: https://doi.org/10.1002/brb3.544. URLpmid: 27843692 |
[103] | Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984),748. URLpmid: 15085132 |
[104] | Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067),500-503. doi: https://doi.org/10.1038/nature04171. URLpmid: 16306992 |
[105] | Wang, S. S., Itthipuripat, S., & Ku, Y. X. (2019). Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory. Journal of Neuroscience, 39(3),528-536. doi: https://doi.org/10.1523/JNEUROSCI.1959-18.2018. URLpmid: 30459222 |
[106] | Ward, R. T., Miskovich, T. A., Stout, D. M., Bennett, K. P., Lotfi, S., & Larson, C. L. (2019). Reward-related distracters and working memory filtering. Psychophysiology, 55(10), Article e13402. doi: https://doi.org/10.1111/psyp.13402. URLpmid: 29732574 |
[107] | Wu, Y.-J., Tseng, P., Chang, C. -F., Pai, M., -C., Hsu, K. -S., Lin, C., -C., & Juan, C.-H. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91,87-94. doi: 10.1016/j.bandc.2014.09.002URLpmid: 25265321 |
[108] | Xu, M. S., Qiao, L., Qi, S. Q., Li, Z. A., Diao, L. T., Fan, L. X., … Yang, D. (2018). Social exclusion weakens storage capacity and attentional filtering ability in visual working memory. Social Cognitive and Affective Neuroscience, 13(1),92-101. doi: https://doi.org/10.1093/scan/nsx139. URLpmid: 29149349 |
[109] | Ye, C. X., Hu, Z., Li, H., Ristaniemi, T., Liu, Q., & Liu, T. (2017). A two-phase model of resource allocation in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10),1557-1566. doi: https://doi.org/10.1016/j.physbeh.2017.03.040. doi: 10.1037/xlm0000376URLpmid: 28252988 |
[110] | Ye, C. X., Sun, H. J., Xu, Q. R., Liang, T. F., Zhang, Y., & Liu, Q. (2019). Working memory capacity affects trade-off between quality and quantity only when stimulus exposure duration is sufficient: Evidence for the two-phase model. Scientific Reports, 9(1),1-14. doi: https://doi.org/10.1038/ s41598-019-44998-3. doi: 10.1038/s41598-018-37186-2URLpmid: 30626917 |
[111] | Ye, C. X., Xu, Q. R., Liu, Q., Cong, F. Y., Saariluoma, P., Ristaniemi, T., & Astikainen, P. (2018). The impact of visual working memory capacity on the filtering efficiency of emotional face distractors. Biological Psychology, 138,63-72. doi: https://doi.org/10.1016/j.biopsycho.2018.08.009. URLpmid: 30125615 |
[112] | Zhang, W. W., & Luck, S. J. (2008). Discrete fixed- resolution representations in visual working memory. Nature, 453(7192),233-235. doi: https://doi.org/10.1038/ nature06860. URLpmid: 18385672 |
[113] | Zhou, J. F., Yin, J., Chen, T., Ding, X. W., Gao, Z. F., & Shen, M. W., (2011). Visual working memory capacity does not modulate the feature-based information filtering in visual working memory. Plos One, 6(9), Article e0023873. doi: https://doi.org/10.1371/journal.pone.0023873. URLpmid: 21984938 |
相关文章 15
[1] | 周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424. |
[2] | 赵小红, 童薇, 陈桃林, 吴冬梅, 张蕾, 陈正举, 方晓义, 龚启勇, 唐小蓉. 敬畏的心理模型及其认知神经机制[J]. 心理科学进展, 2021, 29(3): 520-530. |
[3] | 魏真瑜, 邓湘树, 赵治瀛. 亲社会行为中的从众效应[J]. 心理科学进展, 2021, 29(3): 531-539. |
[4] | 岳童, 黄希庭, 傅安国. 人们何以能够“舍生取义”?基于保护性价值观认知神经机制的解释[J]. 心理科学进展, 2021, 29(3): 540-548. |
[5] | 王葛彤, 席洁, 陈霓虹, 黄昌兵. 双眼视差的神经机制与知觉学习效应[J]. 心理科学进展, 2021, 29(1): 56-69. |
[6] | 郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92. |
[7] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
[8] | 翁纯纯, 王宁. 时距知觉的动物研究范式及相关神经机制[J]. 心理科学进展, 2020, 28(9): 1478-1492. |
[9] | 杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041. |
[10] | 程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163. |
[11] | 张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. 音乐句法加工的认知机制与音乐结构的影响模式[J]. 心理科学进展, 2020, 28(6): 883-892. |
[12] | 杨国春, 伍海燕, 齐玥, 刘勋. 人类性别加工的认知神经机制[J]. 心理科学进展, 2020, 28(12): 2008-2017. |
[13] | 李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051. |
[14] | 岳童, 黄希庭, 徐颖, 潘思存. 价值观的稳定性与可变性:基于认知神经科学的视角[J]. 心理科学进展, 2020, 28(12): 2091-2101. |
[15] | 王鑫, 杭明丽, 梁丹丹. 动词论元结构复杂性加工的认知神经机制[J]. 心理科学进展, 2020, 28(1): 62-74. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5408