
1四川师范大学教育科学学院, 成都 610066
2德阳市东汽小学, 四川 德阳 618000
收稿日期:
2020-02-06出版日期:
2020-12-15发布日期:
2020-10-26通讯作者:
毛秀珍E-mail:maomao_wanli@163.com基金资助:
国家自然科学基金青年项目(31400897)Item selection methods for cognitive diagnostic computerized adaptive testing
TANG Qian1,2, MAO Xiuzhen1(
1Institute of Educational Science, Sichuan Normal University, Chengdu 610066, China
2Dongqi Primary School, Deyang, 618000, China
Received:
2020-02-06Online:
2020-12-15Published:
2020-10-26Contact:
MAO Xiuzhen E-mail:maomao_wanli@163.com摘要/Abstract
摘要: 随着认知诊断计算机化自适应测验(cognitive diagnostic computerized adaptive testing, CD-CAT)理论与实践的发展, 兼顾知识状态与能力的双目标CD-CAT逐渐受到重视。选题策略是CAT的核心, 通过梳理传统CD-CAT和双目标CD-CAT选题策略的研究, 并对它们的特点、关系及表现进行介绍和评析。最后, 基于认知诊断模型与CAT实践发展指出未来应加强一般化认知模型、复杂测验条件认知诊断模型下选题策略的研究; 应开发双目标诊断测验的项目和测验特征指标; 还应加强非参数选题方法和CD-CAT的实践应用研究。
图/表 2
表1传统CD-CAT选题策略汇总表
分类标准 | 特点 | 具体方法 | 适用情景 |
---|---|---|---|
基础选题指标 | 反应分布信息量指标 | KL、PWKL、HKL、MPWKL | 提高测量精度 |
KS后验分布信息量指标 | SHE、MI | ||
基于项目、被试特征选题 | HA、GDI、PWCDI、PWADI | ||
加权选题方法 | 基于区分度、KS后验概率加权 | CDIPWKL、ADIPWKL、PPWKL、PHKL | |
优先指标加权:MPI及变式$MP{{I}_{i}}(i=1,2,3,4)$ | 对信息量(KL、PWKL、MPWKL、MI)加权; $MP{{I}_{\text{1}}}\cdot CDI$、$MP{{I}_{\text{2}}}\cdot CDI$ | 平衡属性测量次数 | |
属性偏差指标加权 | WDKL、SWDKL | ||
结合多种思路 | 运用多个步骤或方法 | RT、RPG、分层方法、优先指标法、P-SWDKL | 平衡项目曝光率 |
表1传统CD-CAT选题策略汇总表
分类标准 | 特点 | 具体方法 | 适用情景 |
---|---|---|---|
基础选题指标 | 反应分布信息量指标 | KL、PWKL、HKL、MPWKL | 提高测量精度 |
KS后验分布信息量指标 | SHE、MI | ||
基于项目、被试特征选题 | HA、GDI、PWCDI、PWADI | ||
加权选题方法 | 基于区分度、KS后验概率加权 | CDIPWKL、ADIPWKL、PPWKL、PHKL | |
优先指标加权:MPI及变式$MP{{I}_{i}}(i=1,2,3,4)$ | 对信息量(KL、PWKL、MPWKL、MI)加权; $MP{{I}_{\text{1}}}\cdot CDI$、$MP{{I}_{\text{2}}}\cdot CDI$ | 平衡属性测量次数 | |
属性偏差指标加权 | WDKL、SWDKL | ||
结合多种思路 | 运用多个步骤或方法 | RT、RPG、分层方法、优先指标法、P-SWDKL | 平衡项目曝光率 |
表2双目标CD-CAT选题策略汇总表
两阶段选题 | 信息量加权平均 | 约束加权信息量 |
---|---|---|
两步法 | 直接加权平均:DI | Q矩阵、KL信息控制指标加权:${{P}_{\text{1}}}\cdot FI(\hat{\theta }){{P}_{\text{2}}}\cdot FI(\hat{\theta }){{P}_{\text{3}}}\cdot FI(\hat{\theta })$ |
影子测验方法 | 统一量纲:ASI、ARI、MASI、MARI、DWI | 信息量乘积:IPA |
分布反应加权:JS |
表2双目标CD-CAT选题策略汇总表
两阶段选题 | 信息量加权平均 | 约束加权信息量 |
---|---|---|
两步法 | 直接加权平均:DI | Q矩阵、KL信息控制指标加权:${{P}_{\text{1}}}\cdot FI(\hat{\theta }){{P}_{\text{2}}}\cdot FI(\hat{\theta }){{P}_{\text{3}}}\cdot FI(\hat{\theta })$ |
影子测验方法 | 统一量纲:ASI、ARI、MASI、MARI、DWI | 信息量乘积:IPA |
分布反应加权:JS |
参考文献 31
[1] | 杜宣宣. (2010). 具有认知诊断功能的计算机化自适应测验的选题策略研究 (硕士学位论文). 江西师范大学, 南昌. |
[2] | 郭磊, 郑蝉金, 边玉芳, 宋乃庆, 夏凌翔. (2016). 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标. 心理学报, 48(7), 903-914. doi: 10.3724/SP.J.1041.2016.00903URL |
[3] | 刘舒畅, 涂冬波, 蔡艳, 赵洋. (2018). 四种新的基于属性平衡的CD-CAT选题策略开发研究. 心理科学, 41(4), 976-981. |
[4] | 罗照盛, 喻晓锋, 高椿雷, 李喻骏, 彭亚风, 王睿, 王钰彤. (2015). 基于属性掌握概率的认知诊断计算机化自适应测验选题策略. 心理学报, 47(5), 679-688. doi: 10.3724/SP.J.1041.2015.00679URL |
[5] | 毛秀珍, 辛涛. (2013). 认知诊断CAT中项目曝光控制方法的比较. 心理学报, 45(6), 694-703. doi: 10.3724/SP.J.1041.2013.00694URL |
[6] | 孙小坚, 王钰彤, 张世夷, 辛涛. (2019). 认知诊断计算机自适应测验中平衡属性收敛的新方法. 心理科学, 42(5), 1236-1244. |
[7] | 汪文义, 丁树良, 宋丽红. (2014). 兼顾测验效率和题库使用率的CD-CAT选题策略. 心理科学, 37(1), 212-216. |
[8] | 余丹, 潘奕娆, 丁树良, 杨庆红. (2011). 计算机化自适应诊断测验新的选题策略. 江西师范大学学报(自然科学版), 35(5), 548-550. |
[9] | Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632. doi: 10.1007/s11336-009-9123-2URL |
[10] | Cheng, Y. (2010). Improving cognitive diagnostic computerized adaptive testing by balancing attribute coverage: The modified maximum global discrimination index method. Educational and Psychological Measurement, 70(6), 902-913. doi: 10.1177/0013164410366693URL |
[11] | Cheng, Y. (2007). The dual information method for item selection in cognitive diagnostic computerized adaptive testing (Master’s thesis). University of Illinois at Urbana-Champaign. |
[12] | Dai, B. Y., Zhang, M. Q., & Li, G. M. (2016). Exploration of item selection in dual-purpose cognitive diagnostic computerized adaptive testing: Based on the RRUM. Applied Psychological Measurement, 40(8), 625-640. doi: 10.1177/0146621616666008URLpmid: 29882535 |
[13] | de la Torre, J., & Chiu,C. Y. (2016). A General method of empirical Q-Matrix validation. Psychometrika, 81(2), 253-273. doi: 10.1007/s11336-015-9467-8URLpmid: 25943366 |
[14] | Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262-277. doi: 10.1177/0146621604272623URL |
[15] | Henson, R., Roussos, L., Douglas, J., & He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32(4), 275-288. doi: 10.1177/0146621607302478URL |
[16] | Kang, H.-A., Zhang, S., & Chang, H.-H. (2017). Dual- objective item selection criteria in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 54(2), 165-183. doi: 10.1111/jedm.12139URL |
[17] | Kaplan, M., de la Torre, J., & Barrada, J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188. doi: 10.1177/0146621614554650URLpmid: 29881001 |
[18] | Kuo, B.-C., Pai, H.-S., & de la Torre, J. (2016). Modified cognitive diagnostic index and modified attribute-level discrimination index for test construction. Applied Psychological Measurement, 40(5), 315-330. doi: 10.1177/0146621616638643URLpmid: 29881056 |
[19] | Lin., C.-J., & Chang, H.-H. (2018). Item selection criteria with practical constraints in cognitive diagnostic computerized adaptive testing. Educational and Psychological Measurement, 79(2), 335-357. doi: 10.1177/0013164418790634URLpmid: 30911196 |
[20] | Liu, H. Y., You, X. F., Wang, W. Y., Ding, S. L., & Chang, H. H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of classification, 30(2), 152-172. doi: 10.1007/s00357-013-9128-5URL |
[21] | Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145-151. doi: 10.1109/18.61115URL |
[22] | McGlohen, M., & Chang, H.-H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808-821. doi: 10.3758/BRM.40.3.808URL |
[23] | Rupp, A. A., Templin, J., & Henson, R. A. . (2010). Diagnostic Measurement: Theory, Methods, and Applications New York: Guiford Press Theory, Methods, and Applications. New York: Guiford Press. |
[24] | Swanson,L., & Stocking,M. L. (1993). A model and heuristic for solving very large item selection problems. Applied Psychological Measurement, 17(2), 151-166. doi: 10.1177/014662169301700205URL |
[25] | Wang, C. (2013). Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length. Educational and Psychological Measurement, 73(6), 1017-1035. doi: 10.1177/0013164413498256URL |
[26] | Wang, C., Chang, H. -H., & Douglas, J. (2012). Combining CAT with cognitive diagnosis: A weighted item selection approach. Behavior Research Methods, 44(1), 95-109. doi: 10.3758/s13428-011-0143-3URL |
[27] | Wang, C., Chang, H.-H., & Huebner, A. (2011). Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 48(3), 255-273. doi: 10.1111/jedm.2011.48.issue-3URL |
[28] | Wang, C., Zheng, C., & Chang, H.-H. (2014). An enhanced approach to combine item response theory with cognitive diagnosis in adaptive testing. Journal of Educational Measurement, 51(4), 358-380. doi: 10.1111/jedm.12057URL |
[29] | Xu, X. L., Chang, H. H., & Douglas, J. (2003). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the annual meeting of National Council on Measurement in Education, Montreal, Canada. |
[30] | Zheng, C., & Chang, H.-H. (2016). High-efficiency response distribution-based item selection algorithms for short-length cognitive diagnostic computerized adaptive testing. Applied Psychological Measurement, 40(8), 608-624. doi: 10.1177/0146621616665196URLpmid: 29881073 |
[31] | Zheng, C., He, G., & Gao, C. (2018). The information product methods: A unified approach to dual-purpose computerized adaptive testing. Applied Psychological Measurement, 42(4), 321-324. doi: 10.1177/0146621617730392URLpmid: 29882539 |
相关文章 9
[1] | 张雪琴, 毛秀珍, 李佳. 基于CAT的在线标定:设计与方法[J]. 心理科学进展, 2020, 28(11): 1970-1978. |
[2] | 高一珠, 陈孚, 辛涛, 詹沛达, 姜宇. 心理测量学模型在学习进阶中的应用:理论、途径和突破[J]. 心理科学进展, 2017, 25(9): 1623-1630. |
[3] | 高旭亮;涂冬波;王芳;张龙;李雪莹. 可修改答案的计算机化自适应测验的方法[J]. 心理科学进展, 2016, 24(4): 654-664. |
[4] | 陈孚;辛涛;刘彦楼;刘拓;田伟. 认知诊断模型资料拟合检验方法和统计量[J]. 心理科学进展, 2016, 24(12): 1946-1960. |
[5] | 毛秀珍;辛涛. 多维计算机化自适应测验:模型、技术和方法[J]. 心理科学进展, 2015, 23(5): 907-918. |
[6] | 陈平;张佳慧;辛涛. 在线标定技术在计算机化自适应测验中的应用[J]. 心理科学进展, 2013, 21(10): 1883-1892. |
[7] | 唐小娟;丁树良;俞宗火. 计算机化自适应测验在认知诊断中的应用[J]. 心理科学进展, 2012, 20(4): 616-626. |
[8] | 毛秀珍;辛涛. 计算机化自适应测验选题策略述评[J]. 心理科学进展, 2011, 19(10): 1552-1562. |
[9] | 陈秋梅; 张敏强. 认知诊断模型发展及其应用方法述评[J]. 心理科学进展, 2010, 18(03): 522-529. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5264