删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

等效性检验——结构方程模型评价和测量不变性分析的新视角

本站小编 Free考研考试/2022-01-01

王阳1, 温忠麟2(), 付媛姝3
1广东金融学院公共管理学院, 广州 510521
2华南师范大学心理学院/心理应用研究中心, 广州 510631
3肇庆学院教育科学学院, 肇庆 526061
收稿日期:2020-03-06出版日期:2020-11-15发布日期:2020-09-23
通讯作者:温忠麟E-mail:wenzl@scnu.edu.cn

基金资助:* 国家自然科学基金项目(31771245);广东省普通高校创新团队项目(人文社科)(2019WCXTD005)

Equivalence testing: A new perspective on structural equation model evaluation and measurement invariance analysis

WANG Yang1, WEN Zhonglin2(), FU Yuanshu3
1School of Public Administration, Guangdong University of Finance, Guangzhou 510521, China
2School of Psychology/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
3School of Education, Zhaoqing University, Zhaoqing 526061, China
Received:2020-03-06Online:2020-11-15Published:2020-09-23
Contact:WEN Zhonglin E-mail:wenzl@scnu.edu.cn






摘要/Abstract


摘要: 常用的结构方程模型拟合指数存在一定局限, 如χ 2以传统零假设为目标假设, 无法验证模型, 而RMSEA和CFI等描述性的拟合指数不具备推断统计性质, 等效性检验有效弥补了这些问题。首先说明等效性检验如何评价单个模型的拟合, 并解释其与零假设检验的不同, 然后介绍等效性检验如何分析测量不变性, 接着用实证数据展示了等效性检验在单个模型评价和测量不变性检验中的效果, 并与传统模型评价方法比较。


表1测量不变性分析各项拟合指数
模型 εt RMSEAt RMSEA CFI ΔRMSEA ΔCFI Δχ2 Δdf p (Δχ2)
形态不变性(男) 0.044 0.068 0.042 0.991
形态不变性(女) 0.051 0.073 0.055 0.981
形态不变性 0.048 0.987
单位不变性 0.017 0.074 0.046 0.986 0.002 0.001 8.352 6 0.213
截距不变性 0.006 0.043 0.042 0.987 0.004 0.001 3.439 6 0.752
潜均值不变性 0.017 0.130 0.043 0.986 0.001 0.001 5.373 2 0.068

表1测量不变性分析各项拟合指数
模型 εt RMSEAt RMSEA CFI ΔRMSEA ΔCFI Δχ2 Δdf p (Δχ2)
形态不变性(男) 0.044 0.068 0.042 0.991
形态不变性(女) 0.051 0.073 0.055 0.981
形态不变性 0.048 0.987
单位不变性 0.017 0.074 0.046 0.986 0.002 0.001 8.352 6 0.213
截距不变性 0.006 0.043 0.042 0.987 0.004 0.001 3.439 6 0.752
潜均值不变性 0.017 0.130 0.043 0.986 0.001 0.001 5.373 2 0.068







[1] 王孟成 . (2014). 潜变量建模与Mplus应用(基础篇). 重庆大学出版社.
[2] 王阳, 王才康, 温忠麟, 肖婉婷 . ( 2017). 共情和同情量表在中国幼儿教师样本中的效度和信度. 中国临床心理学杂志, 25( 6), 1027-1030.
[3] 温涵, 梁韵斯 . ( 2015). 结构方程模型常用拟合指数检验的实质. 心理科学, 38( 4), 987-994.
[4] 温忠麟, 侯杰泰 . ( 2008). 检验的临界值: 真伪差距多大才能辨别?——评《不同条件下拟合指数的表现及临界值的选择》. 心理学报. 40( 1), 119-124.
[5] 温忠麟, 黄彬彬, 汤丹丹 . ( 2018). 问卷数据建模前传. 心理科学, 41( 1), 204-210.
[6] 温忠麟, 刘红云, 侯杰泰 . (2012). 调节效应和中介效应分析. 教育科学出版社.
[7] 吴明隆 . (2010). 结构方程模型——AMOS的操作与应用(第2版). 重庆大学出版社.
[8] 颜志强, 苏彦捷 . ( 2018). 共情的性别差异: 来自元分析的证据. 心理发展与教育, 34( 2), 129-136.
[9] Alpizar, D., French, B. F., & Vo, T. T . ( 2020). Equivalence testing of a youth risk and needs assessment. Journal of Psychoeducational Assessment. Advance online publication.
doi: 10.1177/0734282907303873URLpmid: 26346633
[10] Counsell, A., Cribbie, R. A., & Flora, D. B . ( 2020). Evaluating equivalence testing methods for measurement invariance. Multivariate Behavioral Research, 55( 2), 312-328.
doi: 10.1080/00273171.2019.1633617URLpmid: 31389729
[11] Deng, L. F., & Yuan, K.-H. ( 2016). Comparing latent means without mean structure models: A projection-based approach. Psychometrika, 81( 3), 802-829.
doi: 10.1007/s11336-015-9491-8URLpmid: 26661857
[12] Finch, W. H., & French, B. F . ( 2018). A simulation investigation of the performance of invariance assessment using equivalence testing procedures. Structural Equation Modeling: A Multidisciplinary Journal, 25( 5), 673-686.
[13] Fu, Y. S., Wen, Z. L., & Wang, Y . ( 2018). The total score with maximal reliability and maximal criterion validity: An illustration using a career satisfaction measure. Educational and Psychological Measurement, 78( 6), 1108-1122.
doi: 10.1177/0013164417738564URLpmid: 30559516
[14] Hancock, G. R., & Mueller, R. O . ( 2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71( 2), 306-324.
[15] Jiang, G., Mai, Y. J., & Yuan, K.-H . ( 2017). Advances in measurement invariance and mean comparison of latent variables: Equivalence testing and a projection-based approach. Frontiers in Psychology, 8, Article 1823.
URLpmid: 29416519
[16] Jin, Y. ( 2020). A note on the cutoff values of alternative fit indices to evaluate measurement invariance for ESEM models. International Journal of Behavioral Development, 44( 2), 166-174.
[17] Kelloway, E. K . ( 2015). Using Mplus for structural equation modeling: A researcher’s guide (2nd ed.). SAGE Publications.
[18] Kim, Y. J., & Cribbie, R. A . ( 2018). ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper. British Journal of Mathematical and Statistical Psychology, 71( 1), 1-12.
[19] Lai, K. ( 2020). Confidence interval for RMSEA or CFI difference between nonnested models. Structural Equation Modeling: A Multidisciplinary Journal, 27( 1), 16-32.
doi: 10.1080/10705511.2019.1631704URL
[20] Lakens, D. ( 2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8( 4), 355-362.
doi: 10.1177/1948550617697177URLpmid: 28736600
[21] Marcoulides, K. M., & Yuan, K.-H. ( 2017). New ways to evaluate goodness of fit: A note on using equivalence testing to assess structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 24( 1), 148-153.
doi: 10.1080/10705511.2016.1225260URL
[22] McNeish, D., An, J., & Hancock, G. R . ( 2018). The thorny relation between measurement quality and fit index cutoffs in latent variable models. Journal of Personality Assessment, 100( 1), 43-52.
URLpmid: 28631976
[23] Moshagen, M., & Auerswald, M. ( 2018). On congruence and incongruence of measures of fit in structural equation modeling. Psychological Methods, 23( 2), 318-336.
URLpmid: 28301200
[24] Shi, D., Lee, T., & Maydeu-Olivares, A . ( 2019). Understanding the model size effect on SEM fit indices. Educational and Psychological Measurement, 79( 2), 310-334.
doi: 10.1177/0013164418783530URLpmid: 30911195
[25] Shiskina, T., Farmus, L., & Cribbie, R. A . ( 2018). Testing for a lack of relationship among categorical variables. The Quantitative Methods for Psychology, 14( 3), 167-179.
[26] Svetina, D., Rutkowski, L., & Rutkowski, D . ( 2020). Multiple-group invariance with categorical outcomes using updated guidelines: An illustration using Mplus and the lavaan/semTools packages. Structural Equation Modeling: A Multidisciplinary Journal, 27( 1), 111-130.
[27] Swami, V., & Barron, D. ( 2019). Translation and validation of body image instruments: Challenges, good practice guidelines, and reporting recommendations for test adaptation. Body Image, 31, 204-220.
doi: 10.1016/j.bodyim.2018.08.014URLpmid: 30220631
[28] Taasoobshirazi, G., & Wang, S. S . ( 2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. Journal of Applied Quantitative Methods, 11( 3), 31-40.
[29] Tóth-Király, I., Morin, A. J. S., B?the, B., Orosz, G., & Rigó, A . ( 2018). Investigating the multidimensionality of need fulfillment: A bifactor exploratory structural equation modeling representation. Structural Equation Modeling: A Multidisciplinary Journal, 25( 2), 267-286.
[30] Wang, Y., Li, Y., Xiao, W. T., Fu, Y. S., & Jie, J . ( 2020). Investigation on the rationality of the extant ways of scoring the Interpersonal Reactivity Index based on confirmatory factor analysis. Frontiers in Psychology, 11, Article 1086.
doi: 10.3389/fpsyg.2020.568723URLpmid: 33132976
[31] Wang, Y., Su, Q., & Wen, Z. L . ( 2019). Exploring latent profiles of empathy among Chinese preschool teachers: A person-centered approach. Journal of Psychoeducational Assessment, 37( 6), 706-717.
[32] Wang, Y., Wen, Z. L., Fu, Y. S., & Zheng, L. L . ( 2017). Psychometric properties of a Chinese version of the Measure of Empathy and Sympathy. Personality and Individual Differences, 119, 168-174.
[33] Yuan, K.-H., & Chan, W. ( 2016). Measurement invariance via multigroup SEM: Issues and solutions with chi-square-difference tests. Psychological Methods, 21( 3), 405-426.
doi: 10.1037/met0000080URLpmid: 27266799
[34] Yuan, K.-H., Chan, W., Marcoulides, G. A., & Bentler, P. M . ( 2016). Assessing structural equation models by equivalence testing with adjusted fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 23( 3), 319-330.




[1]陈冠宇, 陈平. 解释性项目反应理论模型:理论与应用[J]. 心理科学进展, 2019, 27(5): 937-950.
[2]张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. 贝叶斯结构方程模型及其研究现状[J]. 心理科学进展, 2019, 27(11): 1812-1825.
[3]邓小平;罗秀文;邬雨臻. 父母卷入在家庭社会经济地位与学业成就间的中介作用:元分析结构方程模型[J]. 心理科学进展, 2016, 24(12): 1844-1853.
[4]方杰;邱皓政;张敏强. 基于多层结构方程模型的情境效应分析—— 兼与多层线性模型比较[J]. 心理科学进展, 2011, 19(2): 284-292.
[5]王晓丽;李西营;邵景进. 形成性测量模型:结构方程模型的新视角[J]. 心理科学进展, 2011, 19(2): 293-300.
[6]卞冉;车宏生;阳辉. 项目组合在结构方程模型中的应用[J]. 心理科学进展, 2007, 15(03): 567-576.
[7]白新文,陈毅文. 测量等价性的概念及其判定条件[J]. 心理科学进展, 2004, 12(02): 231-239.
[8]罗婷;焦书兰. 认知加工速度研究中常用的实验和统计方法[J]. 心理科学进展, 2002, 10(1): 21-28.
[9]刘大维. 结构方程模型在跨文化心理学研究中的应用[J]. 心理科学进展, 1999, 7(2): 48-516.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5229
相关话题/心理 科学 结构 检验 测量