删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

瞳孔变化在记忆加工中的生物标记作用

本站小编 Free考研考试/2022-01-01

于洋1, 姜英杰1(), 王永胜2, 于明阳1
1 东北师范大学心理学院, 长春 130024
2 天津师范大学心理与行为研究院, 天津 300074
收稿日期:2019-03-07出版日期:2020-03-15发布日期:2020-01-18
通讯作者:姜英杰E-mail:jiangyj993@nenu.edu.cn

基金资助:* 国家社会科学基金项目(19BSH113)

Pupil size as a biomarker of memory processing

YU Yang1, JIANG Yingjie1(), WANG Yongsheng2, YU Mingyang1
1 Department of Psychology, Northeast Normal University, Changchun 130024, China
2 Institute of Psychology and Behavior, Tianjin Normal University, Tianjin 300037, China
Received:2019-03-07Online:2020-03-15Published:2020-01-18
Contact:JIANG Yingjie E-mail:jiangyj993@nenu.edu.cn






摘要/Abstract


摘要: 瞳孔在不同记忆任务的同一加工阶段内具有变化模式的一致性, 瞳孔的缩放变化反映了信息加工过程中神经系统的激活状态。在刺激呈现前的预编码阶段, 瞳孔随个体注意集中水平的提高而收缩。在信息编码阶段, 瞳孔扩张程度作为相继记忆效应的生物标记, 可预测信息未来提取阶段的回忆成绩。在信息提取阶段, 采用自由回忆任务时, 瞳孔随记忆负荷的释放而迅速收缩, 但每个项目的提取均会引发小幅度瞳孔扩张; 而在再认提取任务中, 呈现旧刺激比呈现新刺激时瞳孔扩张更明显, 产生瞳孔新旧效应。瞳孔是记忆加工中敏感而稳定的生物标记, 而瞳孔测量法是探究记忆加工生理机制的有效手段。未来可以从瞳孔追踪术的角度, 采用多种研究手段进一步探究记忆的生理机制。


[1] Allan K., & Rugg M. D . (1997). An event-related potential study of explicit memory on tests of cued recall and recognition. Neuropsychologia, 35(4), 387-397.
[2] Appen R. E .(1993). Archives of Ophthalmology. In I. E. Loewenfeld (Ed.), The pupil: Anatomy, physiology and clinical applications: Vol. 1517. (pp. 11-27). Detroit: Wayne State University Press.
[3] Ariel R., & Castel A. D . (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337-344.
[4] Bayer M., Sommer W., & Schacht A . (2011). Emotional words impact the mind but not the body: Evidence from pupillary responses. Psychophysiology, 48(11), 1554-1562.
[5] Beatty J . 1982. Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology, 19, 167-172.
[6] Beatty J., & Lucero-Wagoner B . (2012). The pupillary system. In: J. T. Cacioppo, L. G. Tassinary, & G. G. Bernston, (Eds.), Handbook of Psychophysiology, 2nd ed. (pp. 142-162). New York, Cambridge University Press.
[7] Bradley M. M., & Lang P. J . (2015). Memory, emotion, and pupil diameter: Repetition of natural scenes. Psychophysiology, 52(9), 1186-1193.
[8] Cabeza R., Ciaramelli E., Olson I. R., & Moscovitch M . (2008). The parietal cortex and recognition memory: An attentional account. Nature Reviews Neuroscience, 9, 613-625.
[9] Dobbins I., & Han S . (2007). What constitutes a model of item-based memory decisions? Psychology of Learning and Motivation, 48, 95-144.
[10] Einhäuser W., Koch C., & Carter O. L . (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4, 18-37.
[11] Einhäuser W., Stout J., Koch C., & Carter O . (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1704-1709.
[12] Ezzyat Y., Kragel J. E., Burke J. F., Levy D. F., Lyalenko A., Wanda P., ... Kahana M . (2017). Direct brain stimulation modulates encoding states and memory performance in humans . Current Biology, 27(9), 1251-1258.
[13] Friedman D., Hakerem G., Sutton S., & Fleiss J. L . (1973). Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalography & Clinical Neurophysiology, 34(5), 475-484.
[14] Gardner R. M., Beltramo J. S., & Krkinsky R . (1975). Pupillary changes during encoding, storage, and retrieval of information. Perceptual and Motor Skills, 41(3), 951-955.
[15] Goldinger S. D., & Papesh M. H . (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21(2), 90-95.
[16] Granholm E., & Steinhauer S. R . (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 52(1), 1-6.
[17] Hess E. H., & Polt J. M . (1960). Pupil size as related to interest value of visual stimuli. Science, 132(3423), 349-350.
[18] Hillyard S., Squires K., Bauer J., & Lindsay P . (1971). Evoked potential correlates of auditory signal detection. Science, 172(3990), 1357-1360.
[19] Inaba M., Nomura M., & Ohira H . (2005). Neural evidence of effects of emotional valence on word recognition. International Journal of Psychophysiology, 57(3), 165-173.
[20] Jaeger A., Cox J. C., & Dobbins I. G . (2012). Recognition confidence under violated and confirmed memory expectations. Journal of Experimental Psychology: General, 141(2), 282-301.
[21] Janisse M. P . (1977). Pupillometry: The psychology of the pupillary response. London, UK: Wiley.
[22] Johnson R . (1995). Event-related potential insights into the neurobiology of memory systems. In J. C. Baron & J. Grafman (Eds.), The handbook of neuropsychology, 10. (pp. 135-164). Amsterdam: Elsevier.
[23] Joshi S., Li Y., Kalwani R. M., & Gold J. I . (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234.
[24] Just M. A., & Carpenter P. A . (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47(2), 310-339.
[25] Jutras M. J., Fries P., & Buffalo E. A . (2013). Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proceedings of the National Academy of Sciences, 110(32), 13144-13149.
[26] Kagan J., & Lewis M . (1965). Studies of attention in the human infant. Merrill-Palmer Quarterly of Behavior and Development, 11(2), 95-127.
[27] Kahana M. J . (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 26(6), 1669-1672.
[28] Kahneman D., & Beatty J . (1966). Pupil diameter and load on memory. Science, 154(3756), 1583-1585.
[29] Karatekin C . (2004). Development of attentional allocation in the dual task paradigm. International Journal of Psychophysiology, 52(1), 7-21.
[30] Kim H . (2011). Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage, 54(3), 2446-2461.
[31] Kristjansson S. D . (2009). Detecting phasic lapses in alertness using pupillometric measures. Applied Ergonomics, 40(6), 978-986.
[32] Kucewicz M. T., Dolezal J., Kremen V., Berry B. M., Miller L. R., Magee A. L., ... Worrell G . (2018). Pupil size reflects successful encoding and recall of memory in humans. Scientific Reports, 8(1), 4949.
[33] Lacey J. I . (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In E. A. Rubinstein & M. B. Parloff (Eds.), Research in psychotherapy(pp. 160-208). American Psychological Association. https://doi.org/10.1037/10036-010
[34] Leonard T. K., & Hoffman K. L . (2017). Sharp-wave ripples in primates are enhanced near remembered visual objects. Current Biology, 27(2), 257-262.
[35] Loewenfeld I. E .(1999). The pupil: Anatomy, physiology, and clinical applications Detroit: Iowa State University Press, Ames/ Wayne State University Press.
[36] Mccormick D. A . (1989). Cholinergic and noradrenergic modulation of thalamocortical processing. Trends in Neurosciences, 12(6), 215-221.
[37] Mill R. D., O’Connor A. R., & Dobbins I. G . (2016). Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty. Cognition, 154, 81-94.
[38] Montefinese M., Ambrosini E., Fairfield B., & Mammarella N . (2013). The ‘subjective’ pupil old/new effect: Is the truth plain to see? International Journal of Psychophysiology, 89(1), 48-56.
[39] Montefinese M., Vinson D., & Ambrosini E . (2018). Recognition memory and featural similarity between concepts: The pupil’s point of view. Biological Psychology, 135, 159-169.
[40] Müller H. J., & Rabbitt P. M . (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315-330.
[41] Nelson T. O . (1990). Metamemory: A Theoretical Framework and New Findings. Psychology of Learning and Motivation - Advances in Research and Theory, 26, 125-173.
[42] Netser S., Ohayon S., & Gutfreund Y . (2010). Multiple manifestations of microstimulation in the optic tectum: Eye movements, pupil dilations, and sensory priming. Journal of Neurophysiology, 104(1), 108-118.
[43] O’Connor A. R., Han S., & Dobbins I. G . (2010). The inferior parietal lobule and recognition memory: Expectancy violation or successful retrieval? The Journal of Neuroscience, 30(8), 2924-2934.
[44] Otero S. C., Weekes B. S., & Hutton S. B . (2011). Pupil size changes during recognition memory. Psychophysiology, 48(10), 1346-1353.
[45] Papesh M., & Goldinger S . (2015). Pupillometry and memory: External signals of metacognitive control. In G. Gendolla, M. Tops, & S. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation(pp. 125-139). New York, the United States: Springer.
[46] Papesh M. H., Goldinger S. D., & Hout M. C . (2012). Memory strength and specificity revealed by pupillometry. International Journal of Psychophysiology, 83(1), 56-64.
[47] Ratcliff R., & Murdock B. B . (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190-214.
[48] Reimer J., Froudarakis E., Cadwell C., Yatsenko D., Denfield G., & Tolias A . (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355-362.
[49] Reimer J., Mcginley M. J., Liu Y., Rodenkirch C., Wang Q., Mccormick D. A., & Tolias A . (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7, 13289.
[50] Rugg M. D., & Allan K . (2000). Event-related potential studies of memory. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 521-537). New York, NY: Oxford University Press.
[51] Sanquist T., Rohrbaugh J., Syndulko K., & Lindsley D . (1980). Electrocortical signs of levels of processing: Perceptual analysis and recognition memory. Psychophysiology, 17(6), 568-576.
[52] Starc M., Anticevic A., & Repovš G . (2017). Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance. Psychophysiology, 54(5), 724-735.
[53] Steiner G. Z., & Barry R. J . (2011). Pupillary responses and event-related potentials as indices of the orienting reflex. Psychophysiology, 48(12), 1648-1655.
[54] Unsworth N., & Robison M. K . (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601-615.
[55] van Steenbergen H., & Band G . (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215-223.
[56] Vogelsang D. A., Bonnici H. M., Bergstr M Z. M., Ranganath C., & Simons J. S . (2016). Goal-directed mechanisms that constrain retrieval predict subsequent memory for new “foil” information. Neuropsychologia, 89, 356-363.
[57] Võ M L., Jacobs A. M., Kuchinke L., Hofmann M., Conrad M., Schacht A., & Hutzler F . (2010). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45(1), 130-140.
[58] Wang C. A., Boehnke S. E., Itti L., & Munoz D. P . (2014). Transient pupil response is modulated by contrast-based saliency. Journal of Neuroscience, 34(2), 408-417.
[59] Wel P. V. D., & Steenbergen H. V . (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
[60] Whittlesea B. W. A., & Williams L. D . (1998). Why do strangers feel familiar, but friends don’t? A discrepancy- attribution account of feelings of familiarity. Acta Psychologica, 98(2-3), 141-165.
[61] Whittlesea B. W. A., & Williams L. D . (2001). The discrepancy-attribution hypothesis: I. The heuristic basis of feelings and familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 3-13.




[1]朱俊萍. 如何克服边界条件:来自记忆强度影响记忆去稳定的分子机制的启示[J]. 心理科学进展, 2021, 29(8): 1450-1461.
[2]王春地, 王大辉. 振动触觉频率信息的工作记忆容量及存储机制[J]. 心理科学进展, 2021, 29(7): 1141-1148.
[3]王正雨, 胡金生. 睡眠对创造性问题解决的影响: 基于记忆重组的解释[J]. 心理科学进展, 2021, 29(7): 1251-1263.
[4]张照, 张力为, 龚然. 视觉工作记忆的过滤效能[J]. 心理科学进展, 2021, 29(4): 635-651.
[5]丁琳洁, 李旭, 尹述飞. 工作记忆中的积极效应:情绪效价与任务相关性的影响[J]. 心理科学进展, 2021, 29(4): 652-664.
[6]黄挚靖, 李旭. 抑郁症患者工作记忆内情绪刺激加工的特点及其机制[J]. 心理科学进展, 2021, 29(2): 252-267.
[7]郭滢, 龚先旻, 王大华. 错误记忆产生的认知与神经机制:信息加工视角[J]. 心理科学进展, 2021, 29(1): 79-92.
[8]谢婷婷, 王丽娟, 王天泽. 肢体运动信息如何在工作记忆中存储?[J]. 心理科学进展, 2021, 29(1): 93-101.
[9]李婉如, 库逸轩. 急性应激影响工作记忆的生理心理机制[J]. 心理科学进展, 2020, 28(9): 1508-1524.
[10]杨晓梦, 王福兴, 王燕青, 赵婷婷, 高春颍, 胡祥恩. 瞳孔是心灵的窗口吗?——瞳孔在心理学研究中的应用及测量[J]. 心理科学进展, 2020, 28(7): 1029-1041.
[11]陈伟, 李俊娇, 林小裔, 张晓霞, 郑希付. 行为干预情绪记忆再巩固:从实验室到临床转化[J]. 心理科学进展, 2020, 28(2): 240-251.
[12]冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988.
[13]梁静, 阮倩男, 李贺, 马梦晴, 颜文靖. 认知负荷取向下基于记忆-反应冲突的欺骗检测[J]. 心理科学进展, 2020, 28(10): 1619-1630.
[14]邵意如, 周楚. 事件切割:我们如何知觉并记忆日常事件?[J]. 心理科学进展, 2019, 27(9): 1564-1573.
[15]龙芳芳, 李昱辰, 陈晓宇, 李子媛, 梁腾飞, 刘强. 视觉工作记忆的巩固加工:时程、模式及机制[J]. 心理科学进展, 2019, 27(8): 1404-1416.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4982
相关话题/心理 科学 信息 工作 生理