删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

听觉预测编码:对声音重复和变化的神经反应

本站小编 Free考研考试/2022-01-01

吕雪靖(), 侯欣
中国科学院心理健康重点实验室(中国科学院心理研究所), 北京 100101; 中国科学院大学心理学系, 北京 100049
收稿日期:2019-06-14出版日期:2019-12-15发布日期:2019-10-21
通讯作者:吕雪靖E-mail:luxj@psych.ac.cn

基金资助:* 国家自然科学基金(31701000)和中国科学院心理健康重点实验室经费资助(KLMH2018ZG02)

Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change

LU Xuejing(), HOU Xin
CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2019-06-14Online:2019-12-15Published:2019-10-21
Contact:LU Xuejing E-mail:luxj@psych.ac.cn






摘要/Abstract


摘要: 预测编码被认为是脑与复杂环境交互的重要机制之一, 有效感知外界环境并对未来事件做出预测, 对个体生存有着至关重要的意义。人类大脑会基于感觉输入以迭代的方式持续优化表征外部环境的内部模型, 并不断预测接下来的感觉输入。以听觉模态为例, 人类及动物对声音重复和听觉变化的神经反应(如失匹配负波和刺激特异性适应)是大脑预测编码的重要体现, 表现为重复抑制和预测误差。结合人类和动物模型在此理论框架下开展跨物种研究将有助于加深我们对听觉加工, 甚至是大脑工作机制的认识。


[1] Arnal, L. H., & Giraud, A. L . ( 2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16( 7), 390-398.
[2] Auksztulewicz, R., & Friston, K. (2015). Attentional enhancement of auditory mismatch responses: A DCM/MEG study. Cerebral Cortex, 25( 11), 4273-4283.
[3] Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10( 3), 93-94.
[4] Barry, R. J., Cocker, K. I., Anderson, J. W., Gordon, E., & Rennie, C . ( 1992). Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. International Journal of Psychophysiology, 13( 1), 9-16.
[5] Bendixen, A., Scharinger, M., Strauss, A., & Obleser, J . ( 2014). Prediction in the service of comprehension: Modulated early brain responses to omitted speech segments. Cortex, 53, 9-26.
[6] Bregman, A. S. ( 1994). Auditory scene analysis: The perceptual organization of sound . Cambridge, MA: The MIT Press.
[7] Budd, T. W., Barry, R. J., Gordon, E., Rennie, C., & Michie, P. T . ( 1998). Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness. International Journal of Psychophysiology, 31( 1), 51-68.
[8] Cacciaglia, R., Costa-Faidella, J., Zarnowiec, K., Grimm, S., & Escera, C . ( 2019). Auditory predictions shape the neural responses to stimulus repetition and sensory change. NeuroImage, 86, 200-210.
[9] Carbajal, G. V., & Malmierca, M. S . ( 2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22, 1-33.
[10] Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibanez, A., .. Bekinschtein, T. A . ( 2013). Expectation and attention in hierarchical auditory prediction. Journal of Neuroscience, 33( 27), 11194-11205.
[11] Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., & Henson, R . ( 2016). Silent expectations: Dynamic causal modeling of cortical prediction and attention to sounds that weren't. Journal of Neuroscience, 36( 32), 8305-8316.
[12] Chouiter, L., Tzovara, A., Dieguez, S., Annoni, J.-M., Magezi, D., De Lucia, M., & Spierer, L . ( 2015). Experience-based auditory predictions modulate brain activity to silence as do real sounds. Journal of Cognitive Neuroscience, 27( 10), 1968-1980.
[13] Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36( 3), 181-204.
[14] Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C . ( 2011). Interactions between "what" and "when" in the auditory system: Temporal predictability enhances repetition suppression. Journal of Neuroscience, 31( 50), 18590-18597.
[15] Denham, S. L., & Winkler, I. (2018). Predictive coding in auditory perception: Challenges and unresolved questions. European Journal of Neuroscience. Advance online publication. doi: 10.1111/ejn.13802.
[16] Duque, D., Pais, R., & Malmierca, M. S . ( 2018). Stimulus- specific adaptation in the anesthetized mouse revealed by brainstem auditory evoked potentials. Hearing Research, 370, 294-301.
[17] Dü rschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., .. Knight, R. T . ( 2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113( 24), 6755-6760.
[18] Dürschmid, S., Reichert, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Knight, R. T., & Deouell, L. Y . ( 2018). Direct evidence for prediction signals in frontal cortex independent of prediction error. Cerebral Cortex. doi: 10.1093/cercor/bhy331.
[19] Eriksson, J., & Villa, A. E . ( 2005). Event-related potentials in an auditory oddball situation in the rat. Biosystems, 79( 1-3), 207-212.
[20] Fishman, Y. I., & Steinschneider, M. (2012). Searching for the mismatch negativity in primary auditory cortex of the awake monkey: Deviance detection or stimulus specific adaptation? Journal of Neuroscience, 32( 45), 15747-15758.
[21] Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360( 1456), 815-836.
[22] Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138.
[23] Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21( 8), 1019-1021.
[24] Gorina-Careta, N., Zarnowiec, K., Costa-Faidella, J., & Escera, C . ( 2016). Timing predictability enhances regularity encoding in the human subcortical auditory pathway. Scientific Reports, 6, 37405.
[25] Grimm, S., Escera, C., & Nelken, I . ( 2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23-27.
[26] Grotheer, M., & Kovacs, G. (2016). Can predictive coding explain repetition suppression? Cortex, 80, 113-124.
[27] Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T . ( 2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience, 25( 45), 10494-10501.
[28] Harms, L., Fulham, W. R., Todd, J., Budd, T. W., Hunter, M., Meehan, C., .. Michie, P. T . ( 2014). Mismatch negativity (MMN) in freely-moving rats with several experimental controls. PLoS One, 9( 10), e110892.
[29] Heilbron, M., & Chait, M. (2018). Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience, 389, 54-73.
[30] Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., .. Belliveau, J. W . ( 2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101( 17), 6809-6814.
[31] Khouri, L., & Nelken, I. (2015). Detecting the unexpected. Current Opinion in Neurobiology, 35, 142-147.
[32] Koelsch, S., Vuust, P., & Friston, K . ( 2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23( 1), 63-77.
[33] Kogo, N., & Trengove, C. (2015). Is predictive coding theory articulated enough to be testable? Frontiers in Computational Neuroscience, 9, 111.
[34] Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M., & Vuust, P . ( 2018). Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity. European Journal of Neuroscience, 49( 12), 1597-1609.
[35] Malmierca, M. S., Cristaudo, S., Perez-Gonzalez, D., & Covey, E . ( 2009). Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. Journal of Neuroscience, 29( 17), 5483-5493.
[36] May, P. J., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47( 1), 66-122.
[37] Morillon, B., & Schroeder, C.E . ( 2015). Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Annals of the New York Academy of Sciences, 1337( 1), 26-31.
[38] Muenssinger, J., Stingl, K. T., Matuz, T., Binder, G., Ehehalt, S., & Preissl, H . ( 2013). Auditory habituation to simple tones: Reduced evidence for habituation in children compared to adults. Frontiers in Human Neuroscience, 7, 377.
[39] Näätänen, R., Jacobsen, T., & Winkler, I . ( 2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42( 1), 25-32.
[40] Näätänen, R., Paavilainen, P., & Reinikainen, K . ( 1989). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man. Neuroscience Letters, 107( 1-3), 347-352.
[41] Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K . ( 2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118( 12), 2544-2590.
[42] Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144.
[43] Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24( 4), 375-425.
[44] Näätänen, R., Simpson, M., & Loveless, N. E . ( 1982). Stimulus deviance and evoked potentials. Biological Psychology, 14( 1-2), 53-98.
[45] Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I . ( 2001). ‘Primitive intelligence’in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288.
[46] Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 108( 5), 655-663.
[47] O'Shea, R. P . ( 2015). Refractoriness about adaptation. Frontiers in Human Neuroscience, 9, 38.
[48] Okada, K., Matchin, W., & Hickok, G . ( 2018). Neural evidence for predictive coding in auditory cortex during speech production. Psychonomic Bulletin & Review, 25( 1), 423-430.
[49] Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdes- Baizabal, C., Escera, C., & Malmierca, M. S . ( 2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 8, 2148.
[50] Polterovich, A., Jankowski, M. M., & Nelken, I . ( 2018). Deviance sensitivity in the auditory cortex of freely moving rats. PLoS One, 13( 6), e0197678.
[51] Rao, R. P., & Ballard, D.H . ( 1999). Predictive coding in the visual cortex: A functional interpretation of some extra- classical receptive-field effects. Nature Neuroscience, 2( 1), 79-87.
[52] Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C . ( 2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: An MEG study. NeuroImage, 108, 75-86.
[53] Ritter, W., Vaughan, H. G., & Costa, L. D . ( 1968). Orienting and habituation to auditory stimuli: A study of short-term changes in averaged evoked responses. Electroencephalography and Clinical Neurophysiology, 25( 6), 550-556.
[54] Rubin, J., Ulanovsky, N., Nelken, I., & Tishby, N . ( 2016). The representation of prediction error in auditory cortex. PloS Computational Biology, 12( 8), e1005058.
[55] Rosburg, T., Trautner, P., Boutros, N. N., Korzyukov, O. A., Schaller, C., Elger, C. E., & Kurthen, M . ( 2006). Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology, 43( 2), 137-144.
[56] Rummell, B. P., Klee, J. L., & Sigurdsson, T . ( 2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. Journal of Neuroscience, 36( 47), 12010-12026.
[57] Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R . ( 2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19( 2), 86-91.
[58] Sams, M., Paavilainen, P., Alho, K., & Näätänen, R . ( 1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62( 2), 437-448.
[59] SanMiguel, I., Saupe, K., & Schröger, E . ( 2013). I know what is missing here: Electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Frontiers in Human Neuroscience, 7, 407.
[60] SanMiguel, I., Widmann, A., Bendixen, A., Trujillo-Barreto, N., & Schröger, E . ( 2013). Hearing silences: Human auditory processing relies on preactivation of sound- specific brain activity patterns. Journal of Neuroscience, 33( 20), 8633-8639.
[61] Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H . ( 2012). Predictive top-down integration of prior knowledge during speech perception. Journal of Neuroscience, 32( 25), 8443-8453.
[62] Stefanics, G., Kremlacek, J., & Czigler, I . ( 2016). Mismatch negativity and neural adaptation: Two sides of the same coin. Response: Commentary: Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 10, 13.
[63] Strauss, M., Sitt, J. D., King, J. R., Elbaz, M., Azizi, L., Buiatti, M., .. Dehaene, S . ( 2015). Disruption of hierarchical predictive coding during sleep. Proceedings of the National Academy of Sciences, 112( 11), E1353-E1362.
[64] Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T . ( 2008). Neural repetition suppression refiects fulfilled perceptual expectations. Nature Neuroscience, 11( 9), 1004-1006.
[65] Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Näätänen, R . ( 2002). Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 13( 3), 393-405.
[66] Sussman, E., Winkler, I., & Wang, W . ( 2003). MMN and attention: Competition for deviance detection. Psychophysiology, 40( 2003), 430-435.
[67] Sussman, E. S . ( 2007). A new view on the MMN and attention debate. Journal of Psychophysiology, 21( 3), 164-175.
[68] Symonds, R. M., Lee, W. W., Kohn, A., Schwartz, O., Witkowski, S., & Sussman, E. S . ( 2017). Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection. Brain Topography, 30( 1), 136-148.
[69] Szymanski, F. D., Garcia-Lazaro, J. A., & Schnupp, J. W . ( 2009). Current source density profiles of stimulus- specific adaptation in rat auditory cortex. Journal of Neurophysiology, 102( 3), 1483-1490.
[70] Taaseh, N., Yaron, A., & Nelken, I . ( 2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6( 8), e23369.
[71] Todorovic, A., & de Lange, F.P . ( 2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. Journal of Neuroscience, 32( 39), 13389-13395.
[72] Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31( 25), 9118-9123.
[73] Ulanovsky, N., Las, L., Farkas, D., & Nelken, I . ( 2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24( 46), 10440-10453.
[74] Ulanovsky, N., Las, L., & Nelken, I . ( 2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6( 4), 391-398.
[75] von der Behrens, W., Bäuerle, P., Kossl, M., & Gaese, B. H . ( 2009). Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. Journal of Neuroscience, 29( 44), 13837-13849.
[76] Wacongne, C., Changeux, J. P., & Dehaene, S . ( 2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32( 11), 3665-3678.
[77] Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S . ( 2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108( 51), 20754-20759.
[78] Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21( 3-4), 147-163.
[79] Winkler, I., Denham, S. L., & Nelken, I . ( 2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13( 12), 532-540.
[80] Winkler, I., & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 148, 1-22.
[81] Yabe, H., Tervaniemi, M., Reinikainen, K., & Näätänen, R . ( 1997). Temporal window of integration revealed by MMN to sound omission. NeuroReport, 8( 8), 1971-1974.
[82] Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., lmoniemi, R. J., & Näätänen, R . ( 1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35( 5), 615-619.
[83] Yaron, A., Hershenhoren, I., & Nelken, I . ( 2012). Sensitivity to complex statistical regularities in rat auditory cortex. Neuron, 76( 3), 603-615.
[84] Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P . ( 2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and Language, 162, 72-80.




[1]黄骐, 陈春萍, 罗跃嘉, 伍海燕. 好奇心的机制及作用[J]. 心理科学进展, 2021, 29(4): 723-736.
[2]陈雅弘, 王锦琰. 音乐训练对大脑前注意加工的影响[J]. 心理科学进展, 2019, 27(6): 1036-1043.
[3]李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650.
[4]刘玲, 罗欢. 错觉形状知觉的双阶段生成加工:MEG研究[J]. 心理科学进展, 2017, 25(suppl.): 1-1.
[5]辛昕;任桂琴;李金彩;唐晓雨. 早期视听整合加工——来自MMN的证据[J]. 心理科学进展, 2017, 25(5): 757-768.
[6]贺金波;李兵兵;周宗奎. 酒精对前注意加工的影响:失匹配负波的证据[J]. 心理科学进展, 2011, 19(11): 1645-1650.
[7]陈红雷,周 帆. 工作价值观结构研究的进展和趋势[J]. 心理科学进展, 2003, 11(6): 700-703.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4882
相关话题/心理 科学 中国科学院 人类 北京

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 认知还是元认知:口语产生中舌尖效应的心理机制
    欧阳明昆,蔡笑,张清芳()中国人民大学心理学系,北京100872收稿日期:2019-05-24出版日期:2019-12-15发布日期:2019-10-21通讯作者:张清芳E-mail:qingfang.zhang@ruc.edu.cn基金资助:*北京市社科基金重点项目(16YYA006);中国人民大 ...
    本站小编 Free考研考试 2022-01-01
  • 群际偏差的进化:人类对暴力与疾病威胁的适应
    周晴,吴奇()湖南师范大学教育科学学院心理学系,认知与人类行为湖南省重点实验室,长沙410006收稿日期:2019-04-17出版日期:2019-12-15发布日期:2019-10-21通讯作者:吴奇E-mail:sandwich624@yeah.net基金资助:*国家自然科学基金项目(313008 ...
    本站小编 Free考研考试 2022-01-01
  • 睾酮与人类决策行为
    廖嘉俊,李红,吴寅()深圳大学心理与社会学院,深圳518060收稿日期:2018-04-07出版日期:2019-09-15发布日期:2019-07-24通讯作者:吴寅E-mail:yinwu0407@gmail.com基金资助:国家自然科学基金(31872784);国家自然科学基金(31600923 ...
    本站小编 Free考研考试 2022-01-01
  • 社会排斥的心理行为特征及其脑机制
    彭苏浩,陶丹,冷玥(),邓慧华东南大学儿童发展与教育研究所,南京210096收稿日期:2019-01-14出版日期:2019-09-15发布日期:2019-07-24通讯作者:冷玥E-mail:lengyue@seu.edu.cn基金资助:国家自然科学基金项目(31500881);江苏省自然科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 对人类不良记忆的修饰:来自记忆再巩固的证据
    刘鹏1,2,申鸿魁31山西师范大学教育科学学院心理系2山西师范大学现代文理学院教育系3山西师范大学网络信息中心,临汾041004收稿日期:2018-07-03出版日期:2019-07-26发布日期:2019-06-25基金资助:*山西省应用基础研究计划面上青年项目(201801D221391);山西 ...
    本站小编 Free考研考试 2022-01-01
  • 1993至2016年医学生心理健康变迁的横断历史研究
    辛素飞1(),姜文源1,辛自强21鲁东大学教育科学学院,烟台2640112中央财经大学社会与心理学院,北京100081收稿日期:2018-09-14出版日期:2019-07-15发布日期:2019-05-22通讯作者:辛素飞E-mail:xinsufei2005@163.com基金资助:*国家社会科 ...
    本站小编 Free考研考试 2022-01-01
  • 素食的心理过程及影响因素
    刘潇肖1,田启瑞2(),曾雅丽11厦门大学管理学院,厦门3610052山东师范大学心理学院,济南250358收稿日期:2018-08-12出版日期:2019-07-15发布日期:2019-05-22通讯作者:田启瑞E-mail:tianqirui@sdnu.edu.cn基金资助:*国家自然科学基金青 ...
    本站小编 Free考研考试 2022-01-01
  • 和谐医患关系的心理机制及其促进技术
    孙连荣1,王沛2()1上海师范大学天华学院,上海2018152华东师范大学教育学部特殊教育系,上海200062收稿日期:2018-03-07出版日期:2019-06-15发布日期:2019-04-22通讯作者:王沛E-mail:wangpei1970@163.com基金资助:国家社会科学重大招标项目 ...
    本站小编 Free考研考试 2022-01-01
  • 垂体后叶加压素对人类社会行为的影响
    吴小燕1,2,封春亮2,徐家华4,何振宏5,罗艺6,罗跃嘉1,2,3()1深圳大学脑疾病与认知科学研究中心2深圳市情绪与社会认知科学重点实验室3深圳市神经科学研究院情绪与大脑中心,深圳5180604北京师范大学认知神经科学与学习国家重点实验室,北京1008755DivisionofNeuroscie ...
    本站小编 Free考研考试 2022-01-01
  • 风险决策的概率权重偏差:心理机制与优化策略
    孙庆洲,邬青渊,张静,江程铭,赵雷,胡凤培()浙江工业大学管理学院,杭州310023收稿日期:2018-08-23出版日期:2019-05-15发布日期:2019-03-20通讯作者:胡凤培E-mail:fengpei@zjut.edu.cn基金资助:*教育部人文社科青年基金项目(18YJC6301 ...
    本站小编 Free考研考试 2022-01-01