中国科学院心理健康重点实验室(中国科学院心理研究所), 北京 100101; 中国科学院大学心理学系, 北京 100049
收稿日期:
2019-06-14出版日期:
2019-12-15发布日期:
2019-10-21通讯作者:
吕雪靖E-mail:luxj@psych.ac.cn基金资助:
* 国家自然科学基金(31701000)和中国科学院心理健康重点实验室经费资助(KLMH2018ZG02)Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change
LU Xuejing(), HOU XinCAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2019-06-14Online:
2019-12-15Published:
2019-10-21Contact:
LU Xuejing E-mail:luxj@psych.ac.cn摘要/Abstract
摘要: 预测编码被认为是脑与复杂环境交互的重要机制之一, 有效感知外界环境并对未来事件做出预测, 对个体生存有着至关重要的意义。人类大脑会基于感觉输入以迭代的方式持续优化表征外部环境的内部模型, 并不断预测接下来的感觉输入。以听觉模态为例, 人类及动物对声音重复和听觉变化的神经反应(如失匹配负波和刺激特异性适应)是大脑预测编码的重要体现, 表现为重复抑制和预测误差。结合人类和动物模型在此理论框架下开展跨物种研究将有助于加深我们对听觉加工, 甚至是大脑工作机制的认识。
参考文献 84
[1] | Arnal, L. H., & Giraud, A. L . ( 2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16( 7), 390-398. |
[2] | Auksztulewicz, R., & Friston, K. (2015). Attentional enhancement of auditory mismatch responses: A DCM/MEG study. Cerebral Cortex, 25( 11), 4273-4283. |
[3] | Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10( 3), 93-94. |
[4] | Barry, R. J., Cocker, K. I., Anderson, J. W., Gordon, E., & Rennie, C . ( 1992). Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. International Journal of Psychophysiology, 13( 1), 9-16. |
[5] | Bendixen, A., Scharinger, M., Strauss, A., & Obleser, J . ( 2014). Prediction in the service of comprehension: Modulated early brain responses to omitted speech segments. Cortex, 53, 9-26. |
[6] | Bregman, A. S. ( 1994). Auditory scene analysis: The perceptual organization of sound . Cambridge, MA: The MIT Press. |
[7] | Budd, T. W., Barry, R. J., Gordon, E., Rennie, C., & Michie, P. T . ( 1998). Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness. International Journal of Psychophysiology, 31( 1), 51-68. |
[8] | Cacciaglia, R., Costa-Faidella, J., Zarnowiec, K., Grimm, S., & Escera, C . ( 2019). Auditory predictions shape the neural responses to stimulus repetition and sensory change. NeuroImage, 86, 200-210. |
[9] | Carbajal, G. V., & Malmierca, M. S . ( 2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22, 1-33. |
[10] | Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibanez, A., .. Bekinschtein, T. A . ( 2013). Expectation and attention in hierarchical auditory prediction. Journal of Neuroscience, 33( 27), 11194-11205. |
[11] | Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., & Henson, R . ( 2016). Silent expectations: Dynamic causal modeling of cortical prediction and attention to sounds that weren't. Journal of Neuroscience, 36( 32), 8305-8316. |
[12] | Chouiter, L., Tzovara, A., Dieguez, S., Annoni, J.-M., Magezi, D., De Lucia, M., & Spierer, L . ( 2015). Experience-based auditory predictions modulate brain activity to silence as do real sounds. Journal of Cognitive Neuroscience, 27( 10), 1968-1980. |
[13] | Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36( 3), 181-204. |
[14] | Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C . ( 2011). Interactions between "what" and "when" in the auditory system: Temporal predictability enhances repetition suppression. Journal of Neuroscience, 31( 50), 18590-18597. |
[15] | Denham, S. L., & Winkler, I. (2018). Predictive coding in auditory perception: Challenges and unresolved questions. European Journal of Neuroscience. Advance online publication. doi: 10.1111/ejn.13802. |
[16] | Duque, D., Pais, R., & Malmierca, M. S . ( 2018). Stimulus- specific adaptation in the anesthetized mouse revealed by brainstem auditory evoked potentials. Hearing Research, 370, 294-301. |
[17] | Dü rschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., .. Knight, R. T . ( 2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113( 24), 6755-6760. |
[18] | Dürschmid, S., Reichert, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Knight, R. T., & Deouell, L. Y . ( 2018). Direct evidence for prediction signals in frontal cortex independent of prediction error. Cerebral Cortex. doi: 10.1093/cercor/bhy331. |
[19] | Eriksson, J., & Villa, A. E . ( 2005). Event-related potentials in an auditory oddball situation in the rat. Biosystems, 79( 1-3), 207-212. |
[20] | Fishman, Y. I., & Steinschneider, M. (2012). Searching for the mismatch negativity in primary auditory cortex of the awake monkey: Deviance detection or stimulus specific adaptation? Journal of Neuroscience, 32( 45), 15747-15758. |
[21] | Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360( 1456), 815-836. |
[22] | Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138. |
[23] | Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21( 8), 1019-1021. |
[24] | Gorina-Careta, N., Zarnowiec, K., Costa-Faidella, J., & Escera, C . ( 2016). Timing predictability enhances regularity encoding in the human subcortical auditory pathway. Scientific Reports, 6, 37405. |
[25] | Grimm, S., Escera, C., & Nelken, I . ( 2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23-27. |
[26] | Grotheer, M., & Kovacs, G. (2016). Can predictive coding explain repetition suppression? Cortex, 80, 113-124. |
[27] | Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T . ( 2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience, 25( 45), 10494-10501. |
[28] | Harms, L., Fulham, W. R., Todd, J., Budd, T. W., Hunter, M., Meehan, C., .. Michie, P. T . ( 2014). Mismatch negativity (MMN) in freely-moving rats with several experimental controls. PLoS One, 9( 10), e110892. |
[29] | Heilbron, M., & Chait, M. (2018). Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience, 389, 54-73. |
[30] | Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., .. Belliveau, J. W . ( 2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101( 17), 6809-6814. |
[31] | Khouri, L., & Nelken, I. (2015). Detecting the unexpected. Current Opinion in Neurobiology, 35, 142-147. |
[32] | Koelsch, S., Vuust, P., & Friston, K . ( 2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23( 1), 63-77. |
[33] | Kogo, N., & Trengove, C. (2015). Is predictive coding theory articulated enough to be testable? Frontiers in Computational Neuroscience, 9, 111. |
[34] | Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M., & Vuust, P . ( 2018). Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity. European Journal of Neuroscience, 49( 12), 1597-1609. |
[35] | Malmierca, M. S., Cristaudo, S., Perez-Gonzalez, D., & Covey, E . ( 2009). Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. Journal of Neuroscience, 29( 17), 5483-5493. |
[36] | May, P. J., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47( 1), 66-122. |
[37] | Morillon, B., & Schroeder, C.E . ( 2015). Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Annals of the New York Academy of Sciences, 1337( 1), 26-31. |
[38] | Muenssinger, J., Stingl, K. T., Matuz, T., Binder, G., Ehehalt, S., & Preissl, H . ( 2013). Auditory habituation to simple tones: Reduced evidence for habituation in children compared to adults. Frontiers in Human Neuroscience, 7, 377. |
[39] | Näätänen, R., Jacobsen, T., & Winkler, I . ( 2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42( 1), 25-32. |
[40] | Näätänen, R., Paavilainen, P., & Reinikainen, K . ( 1989). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man. Neuroscience Letters, 107( 1-3), 347-352. |
[41] | Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K . ( 2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118( 12), 2544-2590. |
[42] | Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144. |
[43] | Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24( 4), 375-425. |
[44] | Näätänen, R., Simpson, M., & Loveless, N. E . ( 1982). Stimulus deviance and evoked potentials. Biological Psychology, 14( 1-2), 53-98. |
[45] | Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I . ( 2001). ‘Primitive intelligence’in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288. |
[46] | Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 108( 5), 655-663. |
[47] | O'Shea, R. P . ( 2015). Refractoriness about adaptation. Frontiers in Human Neuroscience, 9, 38. |
[48] | Okada, K., Matchin, W., & Hickok, G . ( 2018). Neural evidence for predictive coding in auditory cortex during speech production. Psychonomic Bulletin & Review, 25( 1), 423-430. |
[49] | Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdes- Baizabal, C., Escera, C., & Malmierca, M. S . ( 2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 8, 2148. |
[50] | Polterovich, A., Jankowski, M. M., & Nelken, I . ( 2018). Deviance sensitivity in the auditory cortex of freely moving rats. PLoS One, 13( 6), e0197678. |
[51] | Rao, R. P., & Ballard, D.H . ( 1999). Predictive coding in the visual cortex: A functional interpretation of some extra- classical receptive-field effects. Nature Neuroscience, 2( 1), 79-87. |
[52] | Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C . ( 2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: An MEG study. NeuroImage, 108, 75-86. |
[53] | Ritter, W., Vaughan, H. G., & Costa, L. D . ( 1968). Orienting and habituation to auditory stimuli: A study of short-term changes in averaged evoked responses. Electroencephalography and Clinical Neurophysiology, 25( 6), 550-556. |
[54] | Rubin, J., Ulanovsky, N., Nelken, I., & Tishby, N . ( 2016). The representation of prediction error in auditory cortex. PloS Computational Biology, 12( 8), e1005058. |
[55] | Rosburg, T., Trautner, P., Boutros, N. N., Korzyukov, O. A., Schaller, C., Elger, C. E., & Kurthen, M . ( 2006). Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology, 43( 2), 137-144. |
[56] | Rummell, B. P., Klee, J. L., & Sigurdsson, T . ( 2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. Journal of Neuroscience, 36( 47), 12010-12026. |
[57] | Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R . ( 2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19( 2), 86-91. |
[58] | Sams, M., Paavilainen, P., Alho, K., & Näätänen, R . ( 1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62( 2), 437-448. |
[59] | SanMiguel, I., Saupe, K., & Schröger, E . ( 2013). I know what is missing here: Electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Frontiers in Human Neuroscience, 7, 407. |
[60] | SanMiguel, I., Widmann, A., Bendixen, A., Trujillo-Barreto, N., & Schröger, E . ( 2013). Hearing silences: Human auditory processing relies on preactivation of sound- specific brain activity patterns. Journal of Neuroscience, 33( 20), 8633-8639. |
[61] | Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H . ( 2012). Predictive top-down integration of prior knowledge during speech perception. Journal of Neuroscience, 32( 25), 8443-8453. |
[62] | Stefanics, G., Kremlacek, J., & Czigler, I . ( 2016). Mismatch negativity and neural adaptation: Two sides of the same coin. Response: Commentary: Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 10, 13. |
[63] | Strauss, M., Sitt, J. D., King, J. R., Elbaz, M., Azizi, L., Buiatti, M., .. Dehaene, S . ( 2015). Disruption of hierarchical predictive coding during sleep. Proceedings of the National Academy of Sciences, 112( 11), E1353-E1362. |
[64] | Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T . ( 2008). Neural repetition suppression refiects fulfilled perceptual expectations. Nature Neuroscience, 11( 9), 1004-1006. |
[65] | Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Näätänen, R . ( 2002). Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 13( 3), 393-405. |
[66] | Sussman, E., Winkler, I., & Wang, W . ( 2003). MMN and attention: Competition for deviance detection. Psychophysiology, 40( 2003), 430-435. |
[67] | Sussman, E. S . ( 2007). A new view on the MMN and attention debate. Journal of Psychophysiology, 21( 3), 164-175. |
[68] | Symonds, R. M., Lee, W. W., Kohn, A., Schwartz, O., Witkowski, S., & Sussman, E. S . ( 2017). Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection. Brain Topography, 30( 1), 136-148. |
[69] | Szymanski, F. D., Garcia-Lazaro, J. A., & Schnupp, J. W . ( 2009). Current source density profiles of stimulus- specific adaptation in rat auditory cortex. Journal of Neurophysiology, 102( 3), 1483-1490. |
[70] | Taaseh, N., Yaron, A., & Nelken, I . ( 2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6( 8), e23369. |
[71] | Todorovic, A., & de Lange, F.P . ( 2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. Journal of Neuroscience, 32( 39), 13389-13395. |
[72] | Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31( 25), 9118-9123. |
[73] | Ulanovsky, N., Las, L., Farkas, D., & Nelken, I . ( 2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24( 46), 10440-10453. |
[74] | Ulanovsky, N., Las, L., & Nelken, I . ( 2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6( 4), 391-398. |
[75] | von der Behrens, W., Bäuerle, P., Kossl, M., & Gaese, B. H . ( 2009). Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. Journal of Neuroscience, 29( 44), 13837-13849. |
[76] | Wacongne, C., Changeux, J. P., & Dehaene, S . ( 2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32( 11), 3665-3678. |
[77] | Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S . ( 2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108( 51), 20754-20759. |
[78] | Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21( 3-4), 147-163. |
[79] | Winkler, I., Denham, S. L., & Nelken, I . ( 2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13( 12), 532-540. |
[80] | Winkler, I., & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 148, 1-22. |
[81] | Yabe, H., Tervaniemi, M., Reinikainen, K., & Näätänen, R . ( 1997). Temporal window of integration revealed by MMN to sound omission. NeuroReport, 8( 8), 1971-1974. |
[82] | Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., lmoniemi, R. J., & Näätänen, R . ( 1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35( 5), 615-619. |
[83] | Yaron, A., Hershenhoren, I., & Nelken, I . ( 2012). Sensitivity to complex statistical regularities in rat auditory cortex. Neuron, 76( 3), 603-615. |
[84] | Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P . ( 2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and Language, 162, 72-80. |
相关文章 7
[1] | 黄骐, 陈春萍, 罗跃嘉, 伍海燕. 好奇心的机制及作用[J]. 心理科学进展, 2021, 29(4): 723-736. |
[2] | 陈雅弘, 王锦琰. 音乐训练对大脑前注意加工的影响[J]. 心理科学进展, 2019, 27(6): 1036-1043. |
[3] | 李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650. |
[4] | 刘玲, 罗欢. 错觉形状知觉的双阶段生成加工:MEG研究[J]. 心理科学进展, 2017, 25(suppl.): 1-1. |
[5] | 辛昕;任桂琴;李金彩;唐晓雨. 早期视听整合加工——来自MMN的证据[J]. 心理科学进展, 2017, 25(5): 757-768. |
[6] | 贺金波;李兵兵;周宗奎. 酒精对前注意加工的影响:失匹配负波的证据[J]. 心理科学进展, 2011, 19(11): 1645-1650. |
[7] | 陈红雷,周 帆. 工作价值观结构研究的进展和趋势[J]. 心理科学进展, 2003, 11(6): 700-703. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4882