华东师范大学教育学部教育康复学系, 上海 200062
收稿日期:
2018-05-05出版日期:
2019-02-15发布日期:
2018-12-25通讯作者:
张畅芯E-mail:changxin_zhang@126.com基金资助:
* 中央高校基本科研业务费项目华东师范大学青年预研究项目“先天聋儿中枢听觉处理能力特征及干预策略研究”(2017ECNU-YYJ045);上海市青年科技英才扬帆计划资助项目“基于虚拟现实场景的训练对于提升听障儿童希望感的作用研究”(16YF1403300)Brain plasticity under early auditory deprivation: Evidence from congenital hearing-impaired people
ZHANG Changxin()Department of Education and Rehabilitation, Faculty of Education, East China Normal University, Shanghai 200062, China
Received:
2018-05-05Online:
2019-02-15Published:
2018-12-25Contact:
ZHANG Changxin E-mail:changxin_zhang@126.com摘要/Abstract
摘要: 皮层功能的正常发展依赖于充分的外部感觉信息的输入。先天性听力障碍群体由于经历早期听觉剥夺, 皮层功能往往出现异常。具体表现为初级听皮层功能退化, 初级、次级听皮层的功能连接变弱, 次级听皮层出现跨通道功能重组; 在后天听力重建后听皮层功能重组仍然存在, 言语加工需要更多高级认知资源的补偿。已有研究在探讨听力重建后皮层的长期可塑性机制、复杂声学环境下言语加工机制、汉语言加工独特性等方面尚不深入, 值得进一步研究。
参考文献 91
1 | 张明, 陈骐 . ( 2003). 听觉障碍人群的皮层可塑性.中国特殊教育, 40( 4), 43-48. |
2 | 郑菁婧, 李舒婧, 于翔 ( 2014). 自然感觉刺激对脑发育的影响.生命科学, 26( 11), 1103-1106. |
3 | Anderson C. A., Lazard D. S., &Hartley D. E. H .( 2017). Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing.Hearing Research, 343, 138-149. doi: 10.1016/j.heares.2016.07.013URL |
4 | Barone P., Strelnikov K., & Déguine O. ( 2013). Role of audiovisual plasticity in speech recovery after adult cochlear implantation. In Auditory-Visual Speech Processing (AVSP) 2013 . |
5 | Bayat A., Farhadi M., Emamdjomeh H., Saki N., Mirmomeni G., & Rahim F . ( 2017). Effect of conductive hearing loss on central auditory function.Brazilian Journal of Otorhinolaryngology, 83( 2), 137-141. doi: 10.1016/j.bjorl.2016.02.010URL |
6 | Bellis T. J. ( 2011). Assessment & Management of Central Auditory Processing Disorders in the Educational Setting: From Science to Practice. Plural Publishing. |
7 | Birchwood M., Todd P., & Jackson C . ( 1998). Early intervention in psychosis. The critical period hypothesis.The British Journal of Psychiatry. Supplement, 172( 33), 53-59. |
8 | Bola L., Zimmermann M., Mostowski P., Jednoróg K., Marchewka A., Rutkowski P., & Szwed M . ( 2017). Task-specific reorganization of the auditory cortex in deaf humans.Proceedings of the National Academy of Sciences, 114( 4), E600-E609. doi: 10.1073/pnas.1609000114URL |
9 | Brenneman L., Cash E., Chermak G. D., Guenette L., Masters G., Musiek F. E., .. Weihing J . ( 2017). The relationship between central auditory processing, language, and cognition in children being evaluated for central auditory processing disorder.Journal of the American Academy of Audiology, 28( 8), 758-769. doi: 10.3766/jaaa.16119URL |
10 | Butler B. E., Chabot N., Kral A., & Lomber S. G . ( 2017). Origins of thalamic and cortical projections to the posterior auditory field in congenitally deaf cats.Hearing Research, 343, 118-127. doi: 10.1016/j.heares.2016.06.003URL |
11 | Campbell J. & Sharma, A. ( 2014). Cross-modal re-organization in adults with early stage hearing loss.PloS One, 9( 2), e90594. doi: 10.1371/journal.pone.0090594URL |
12 | Campbell J. & Sharma, A. ( 2016). Visual cross-modal re- organization in children with cochlear implants.PloS One, 11( 1), e0147793. doi: 10.1371/journal.pone.0147793URL |
13 | Cardin V., Orfanidou E., Rönnberg J., Capek C. M., Rudner M., & Woll B . ( 2013). Dissociating cognitive and sensory neural plasticity in human superior temporal cortex.Nature Communications, 4, 1473. doi: 10.1038/ncomms2463URL |
14 | Carey S., &Gelman R. ( 2014) The Epigenesis of Mind: Essays on Biology and Cognition Psychology Press Essays on Biology and Cognition. Psychology Press. |
15 | Chang Y-P., Chang R. Y., Lin C-Y., & Luo X . ( 2016). Mandarin tone and vowel recognition in cochlear implant users: Effects of talker variability and bimodal hearing.Ear and Hearing, 37( 3), 271-281. doi: 10.1097/AUD.0000000000000265URL |
16 | Chen L-C., Sandmann P., Thorne J. D., Bleichner M. G., & Debener S . ( 2016). Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS.Neural Plasticity, 2016, 13. |
17 | Clemo H. R., Lomber S. G., & Meredith M. A . ( 2014). Synaptic basis for cross-modal plasticity: enhanced supragranular dendritic spine density in anterior ectosylvian auditory cortex of the early deaf cat.Cerebral Cortex, 26( 4), 1365-1376. |
18 | de Ribaupierre F . ( 1997). Acoustical information processing in the auditory thalamus and cerebral cortex. In Ehret, G. & Romand, R. (Eds.) The Central Auditory System (pp. 317-397). New York, Oxford University Press. |
19 | de Schonen S., Bertoncini J., Petroff N., Couloigner V。, & Van Den Abbeele T . ( 2018). Visual cortical activity before and after cochlear implantation: A follow up ERP prospective study in deaf children.International Journal of Psychophysiology, 123, 88-102. doi: 10.1016/j.ijpsycho.2017.10.009URL |
20 | Deniz B., Jeanne C., Carina P., Benard M. R., Pranesh B., Jefta S., … Etienne G . ( 2016). Cognitive compensation of speech perception with hearing impairment, cochlear implants, and aging: How and to what degree can it be achieved?.Trends in Hearing, 20. |
21 | Dewey R.S., & Hartley, D. E.H . ( 2015). Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy.Hearing Research, 325, 55-63. doi: 10.1016/j.heares.2015.03.007URL |
22 | Du Y., He Y., Arnott S. R., Ross B., Wu X., Li L., & Alain C . ( 2015). Rapid tuning of auditory “what” and “where” pathways by training.Cerebral Cortex, 25( 2), 496-506. doi: 10.1093/cercor/bht251URL |
23 | Feng G., Ingvalson E. M., Grieco-Calub T. M., Roberts M. Y., Ryan M. E., Birmingham P。, Wong P. C. M . ( 2018). Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients.Proceedings of the National Academy of Sciences of the United States of America, 115( 5), E1022-E1031. |
24 | Ferrari M. & Quaresima, V. ( 2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.Neurolmage, 63( 2), 921-935. doi: 10.1016/j.neuroimage.2012.03.049URL |
25 | Fine I., Finney E. M., Boynton G. M., & Dobkins K. R . ( 2005). Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex.Journal of Cognitive Neuroscience, 17( 10), 1621-1637. doi: 10.1162/089892905774597173URL |
26 | Hauthal N., Thorne J. D., Debener S., & Sandmann P . ( 2014). Source localisation of visual evoked potentials in congenitally deaf individuals.Brain Topography, 27( 3), 412-424. doi: 10.1007/s10548-013-0341-7URL |
27 | Hensch T.K . ( 2005). Critical period plasticity in local cortical circuits.Nature Reviews Neuroscience, 6( 11), 877-888. |
28 | Hirshorn E. A., Dye M. W. G., Hauser P. C., Supalla T. R., & Bavelier D . ( 2014). Neural networks mediating sentence reading in the deaf.Frontiers in Human Neuroscience, 8, 394. |
29 | Hopkins K. & Moore, B.C . ( 2010). The importance of temporal fine structure information in speech at different spectral regions for normal-hearing and hearing-impaired subjects.Journal of the Acoustical Society of America, 127( 3), 1595-1608. doi: 10.1121/1.3293003URL |
30 | Hossain M. D., Raghunandhan S., Kameswaran M., & Ranjith R . ( 2013). A clinical study of cortical auditory evoked potentials in cochlear implantees.Indian Journal of Otolaryngology and Head & Neck Surgery, 65( 3), 587-593. |
31 | Houston D.M., & Miyamoto, R.T . ( 2010). Effects of early auditory experience on word learning and speech perception in deaf children with cochlear implants: implications for sensitive periods of language development.Otology and Neurotology, 31( 8), 1248-1253. doi: 10.1097/MAO.0b013e3181f1cc6aURL |
32 | Huttenlocher P.R . ( 1999). Dendritic and synaptic development in human cerebral cortex: time course and critical periods.Developmental Neuropsychology, 16( 3), 347-349. doi: 10.1207/S15326942DN1603_12URL |
33 | Gilley P.M., & Sharma, A. ( 2010). Functional brain dynamics of evoked and event-related potentials from the central auditory system.Perspectives on Hearing and Hearing Disorders: Research and Diagnostics, 14( 1), 12-20. doi: 10.1044/hhd14.1.12URL |
34 | Gori M., Chilosi A., Forli F., & Burr D . ( 2017). Audio-visual temporal perception in children with restored hearing.Neuropsychologia, 99, 350-359. doi: 10.1016/j.neuropsychologia.2017.03.025URL |
35 | Hickok G. & Poeppel, D. ( 2015). Neural basis of speech perception.Handbook of Clinical Neurology, 129, 149-160. doi: 10.1016/B978-0-444-62630-1.00008-1URL |
36 | Kim B. G., Kim J. W., Park J. J., Kim S. H., Kim H. N., & Choi J. Y . ( 2015). Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients.JAMA Otolaryngology-Head & Neck Surgery, 141( 1), 45-52. |
37 | Kok M.A., & Lomber, S.G . ( 2017). Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness.Hearing Research, 343, 108-117. doi: 10.1016/j.heares.2016.05.013URL |
38 | Koravand A., Jutras B., & Lassonde M . ( 2017). Abnormalities in cortical auditory responses in children with central auditory processing disorder.Neuroscience, 346, 135-148. doi: 10.1016/j.neuroscience.2017.01.011URL |
39 | Kral A. & Eggermont, J.J . ( 2007). What's to lose and what's to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity.Brain Research Reviews, 56( 1), 259-269. doi: 10.1016/j.brainresrev.2007.07.021URL |
40 | Kral A., Tillein J., Heid S., Hartmann R., & Klinke R . ( 2004). Postnatal cortical development in congenital auditory deprivation.Cerebral Cortex, 15( 5), 552-562. |
41 | Lambertz N., Gizewski E. R., de Greiff A., & Forsting M . ( 2005). Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss.Cognitive Brain Research, 25( 3), 884-890. doi: 10.1016/j.cogbrainres.2005.09.010URL |
42 | Lazard D. S., Innes-Brown H., & Barone P . ( 2014). Adaptation of the communicative brain to post-lingual deafness. Evidence from functional imaging.Hearing Research, 307, 136-143. doi: 10.1016/j.heares.2013.08.006URL |
43 | Li J-N., Chen S., Zhai L., Han D-Y., Eshraghi A. A., Feng Y., .. Liu X-Z . ( 2017). The advances in hearing rehabilitation and cochlear implants in China.Ear and Hearing, 38( 6), 647-652. doi: 10.1097/AUD.0000000000000441URL |
44 | Lin F. R., Ferrucci L., An Y., Goh J. O., Doshi J., Metter E. J., .. Resnick S. M . ( 2014). Association of hearing impairment with brain volume changes in older adults.Neurolmage, 90, 84-92. doi: 10.1016/j.neuroimage.2013.12.059URL |
45 | Lomber S.G . ( 2017). What is the function of auditory cortex when it develops in the absence of acoustic input?.Cognitive Development, 42, 49-61. doi: 10.1016/j.cogdev.2017.02.007URL |
46 | Lomber S. G., Meredith M. A., & Kral A . ( 2011). Adaptive crossmodal plasticity in deaf auditory cortex: Areal and laminar contributions to supranormal vision in the deaf.Progress in Brain Research, 191, 251-270. |
47 | Mistrík P., Jolly C., Sieber D., & Hochmair I . ( 2018). Challenging aspects of contemporary cochlear implant electrode array design.World Journal of Otorhinolaryngology- Head and Neck Surgery, 3( 4), 192-199. |
48 | Moon I.J., & Hong, S.H . ( 2014). What is temporal fine structure and why is it important?.Korean Journal of Audiology, 18( 1), 1-7. doi: 10.7874/kja.2014.18.1.1URL |
49 | Morosan P., Rademacher J., Schleicher A., Amunts K., Schormann T., & Zilles K . ( 2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system.Neurolmage, 13( 4), 684-701. |
50 | Mortensen M. V., Mirz F., & Gjedde A . ( 2006). Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness.Neurolmage,31( 2), 842-852. doi: 10.1016/j.neuroimage.2005.12.020URL |
51 | Näätänen R. & Picton, T. ( 1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure.Psychophysiology, 24( 4), 375-425. doi: 10.1111/psyp.1987.24.issue-4URL |
52 | Narain C., Scott S. K., Wise R. J. S., Rosen S., Leff A., Iversen S. D., & Matthews P. M . ( 2003). Defining a left-lateralized response specific to intelligible speech using fMRI.Cerebral Cortex, 13( 12), 1362-1368. |
53 | Neville H. J., Bavelier D., Corina D., Rauschecker J., Karni A., Lalwani A., .. Turner R . ( 1998). Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience.Proceedings of the National Academy of Sciences of the United States of America, 95( 3), 922-929. |
54 | Olds C., Pollonini L., Abaya H., Larky J., Loy M., Bortfeld H., .. Oghalai J. S . ( 2016). Cortical activation patterns correlate with speech understanding after cochlear implantation.Ear and Hearing, 37( 3), e160-e172. doi: 10.1097/AUD.0000000000000258URL |
55 | Papagno C., Minniti G., Mattavelli G. C., Mantovan L., & Cecchetto C . ( 2017). Tactile short-term memory in sensory-deprived individuals.Experimental Brain Research, 235( 2), 471-480. doi: 10.1007/s00221-016-4808-0URL |
56 | Petersen B., Gjedde A., Wallentin M., & Vuust P. ( 2013). Cortical plasticity after cochlear implantation. Neural Plasticity, 2013, |
57 | Ponton C.W., & Eggermont, J.J . ( 2001). Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use.Audiology and Neurotology, 6( 6), 363-380. |
58 | Ponton C., Eggermont J. J., Khosla D., Kwong B., & Don M . ( 2002). Maturation of human central auditory system activity: Separating auditory evoked potentials by dipole source modeling.Clinical Neurophysiology, 113( 3), 407-420. doi: 10.1016/S1388-2457(01)00733-7URL |
59 | Peelle J. E., Johnsrude I. S., & Davis M. H . ( 2010). Hierarchical processing for speech in human auditory cortex and beyond.Frontiers in Human Neuroscience, 4, 51. |
60 | Peelle J. E., Troiani V., Grossman M., & Wingfield A . ( 2011). Hearing loss in older adults affects neural systems supporting speech comprehension.Journal of Neuroscience, 31( 35), 12638-12643. |
61 | Penfield W., & Roberts L. .( 1959) . Speech and Brain MechanismsL. Princeton, NJ, US: Princeton University Press. |
62 | Rauschecker J.P . ( 2017). Where, when, and how: Are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition.Cortex, 98, 262-268 |
63 | Rouger J., Lagleyre S., Démonet J. F., Fraysse B., Deguine O., & Barone P ., ( 2012). Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients.Human. Brain Mapping. 33( 8), 1929-1940. |
64 | Sandmann P., Dillier N., Eichele T., Meyer M., Kegel A., Pascual-Marqui R. D., … Debener S . ( 2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users.Brain, 135( 2), 555-568. doi: 10.1093/brain/awr329URL |
65 | Sandmann P., Eichele T., Buechler M., Debener S., Jancke L., Dillier N., … Meyer M . ( 2009). Evaluation of evoked potentials to dyadic tones after cochlear implantation.Brain, 132( 7), 1967-1979. doi: 10.1093/brain/awp034URL |
66 | Schorr E. A., Roth F. P., & Fox N. A . ( 2008). A comparison of the speech and language skills of children with cochlear implants and children with normal hearing.Communication Disorders Quarterly, 29( 4), 195-210. doi: 10.1177/1525740108321217URL |
67 | Schreiner C.E., Read H. L., &Sutter, M.L . ( 2000). Modular organization of frequency integration in primary auditory cortex.Annual Review of Neuroscience, 23, 501-529. doi: 10.1146/annurev.neuro.23.1.501URL |
68 | Scott G. D., Karns C. M., Dow M. W., Stevens C., & Neville H. J . ( 2014). Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.Frontiers in Human Neuroscience, 8, 177. |
69 | Sharma A., Campbell J., & Cardon G . ( 2015). Developmental and cross-modal plasticity in deafness: Evidence from the P1 and N1 event related potentials in cochlear implanted children.International Journal of Psychophysiology, 95( 2), 135-144. doi: 10.1016/j.ijpsycho.2014.04.007URL |
70 | Sharma A., Dorman M. F., & Kral A . ( 2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants.Hearing Research, 203( 1-2), 134-143. |
71 | Sharma A., Dorman M. F., & Spahr A. J . ( 2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation.Ear and Hearing, 23( 6), 532-539. |
72 | Sharma A., Nash A. A., & Dorman M . ( 2009). Cortical development, plasticity and re-organization in children with cochlear implants.Journal of communication disorders, 42( 4), 272-279. doi: 10.1016/j.jcomdis.2009.03.003URL |
73 | Sharp A., Landry S. P., Maheu M., & Champoux F . ( 2018). Deafness alters the spatial mapping of touch.PloS one, 13( 3), e0192993. doi: 10.1371/journal.pone.0192993URL |
74 | Shiell M. M., Champoux F., & Zatorre R. J . ( 2014). Enhancement of visual motion detection thresholds in early deaf people.PLoS One, 9( 2), e90498. doi: 10.1371/journal.pone.0090498URL |
75 | Shinn-Cunningham B.G., & Best, V. ( 2008). Selective attention in normal and impaired hearing.Trends in Amplification, 12( 4), 283-299. doi: 10.1177/1084713808325306URL |
76 | Silva L. A., Couto M. I., Tsuji R. K., Bento R. F., Matas C. G., & Carvalho A. C . ( 2014). Auditory pathways' maturation after cochlear implant via cortical auditory evoked potentials.Brazilian Journal of Otorhinolaryngology, 80( 2), 131-137. doi: 10.5935/1808-8694.20140028URL |
77 | Stephen J. M., Hill D. E., Peters A., Flynn L., Zhang T., & Okada Y . ( 2017). Development of auditory evoked responses in normally developing preschool children and children with autism spectrum disorder.Developmental Neuroscience, 39( 5), 430-441. doi: 10.1159/000477614URL |
78 | Strelnikov K., Marx M., Lagleyre S., Fraysse B., Deguine O., & Barone P . ( 2015 a). PET-imaging of brain plasticity after cochlear implantation.Hearing Research, 322, 180-187. doi: 10.1016/j.heares.2014.10.001URL |
79 | Strelnikov K., Rouger J., Lagleyre S., Fraysse B., Démonet J-F., Déguine O., & Barone P . ( 2015 b). Increased audiovisual integration in cochlear-implanted deaf patients: Independent components analysis of longitudinal positron emission tomography data.European Journal of Neuroscience, 41( 5), 677-685. doi: 10.1111/ejn.12827URL |
80 | Stuart G., Spruston N., &Häusser M.(Eds.). ( 2016). Dendrites. Oxford University Press. |
81 | Tao D., Deng R., Jiang Y., Galvin III J. J., Fu Q-J., & Chen B . ( 2015). Melodic pitch perception and lexical tone perception in Mandarin-speaking cochlear implant users.Ear and Hearing, 36( 1), 102-110. doi: 10.1097/AUD.0000000000000086URL |
82 | Tomlin D. & Rance, G. ( 2016). Maturation of the central auditory nervous system in children with auditory processing disorder.In Seminars in Hearing, 37( 1), 74-83. doi: 10.1055/s-00000067URL |
83 | Viola F. C., De Vos M., Hine J., Sandmann P., Bleeck S., Eyles J., & Debener S . ( 2012). Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials.Hearing Research, 284( 1-2), 6-15. doi: 10.1016/j.heares.2011.12.010URL |
84 | Wagner L., Maurits N., Maat B., Başkent D., & Wagner A. E . ( 2018). The cochlear implant EEG artifact recorded from an artificial brain for complex acoustic stimuli.IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26( 2), 392-399. doi: 10.1109/TNSRE.2018.2789780URL |
85 | Wiggins I. M., Anderson C. A., Kitterick P. T., &Hartley D. E. H . ( 2016). Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?.Hearing Research, 339, 142-154. doi: 10.1016/j.heares.2016.07.007URL |
86 | Wiggins I. M., Hartley D. E. H ., ( 2015). A synchrony- dependent influence of sounds on activity in visual cortex measured using functional near-infrared spectroscopy (fNIRS).PLoS One 10( 3), e0122862. |
87 | Woldorff M. G., Gallen C. C., Hampson S. A., Hillyard S. A., Pantev C., Sobel D., & Bloom F. E . ( 1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention.Proceedings of the National Academy of Sciences of the United States of America, 90( 18), 8722-8726. doi: 10.1073/pnas.90.18.8722URL |
88 | Xu Y. Y., Chen M., Lafaire P., Tan X. D., & Richter C. P . ( 2017). Distorting temporal fine structure by phase shifting and its effects on speech intelligibility and neural phase locking.Scientific Report, 7(1). |
89 | Zeng F.G . ( 2017). Challenges in improving cochlear implant performance and accessibility.IEEE Transactions on Biomedical Engineering, 64( 8), 1662-1664. doi: 10.1109/TBME.2017.2718939URL |
90 | Zeng F.G., & Fay, R.R . Eds.( 2013). Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Science & Business Media. |
91 | Zeng F-G., Tang Q., & Lu T . ( 2014). Abnormal pitch perception produced by cochlear implant stimulation.Plos One, 9( 2), e88662. doi: 10.1371/journal.pone.0088662URL |
相关文章 3
[1] | 霍丽娟, 郑志伟, 李瑾, 李娟. 老年人的脑可塑性:来自认知训练的证据[J]. 心理科学进展, 2018, 26(5): 846-858. |
[2] | 陶维东;孙弘进;张旭东;郑剑虹. 非面孔物体倒置效应形成过程的认知神经机制[J]. 心理科学进展, 2011, 19(8): 1104-1114. |
[3] | 李艳玮;李燕芳. 儿童青少年认知能力发展与脑发育[J]. 心理科学进展, 2010, 18(11): 1700-1706. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4593