1 首都师范大学心理学院, 北京 100037
2 华中师范大学心理学院, 武汉 430079
收稿日期:
2018-05-03出版日期:
2019-01-15发布日期:
2018-11-23基金资助:
* 国家自然科学基金项目(31470989)Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus
WU Jing1, CUI Ruisi1, SUN Cuicui2, LI Xinwang1()1 School of Psychology, Capital Normal University, Beijing 100037, China
2 School of Psychology, Central China Normal University, Wuhan 430079, China
Received:
2018-05-03Online:
2019-01-15Published:
2018-11-23摘要/Abstract
摘要: 喙内侧被盖核(RMTg)位于腹侧被盖区(VTA)的尾部, 富含抑制性的γ-氨基丁酸(GABA)能神经元.RMTg是中脑边缘多巴胺系统的一个综合调节器.它的GABA能神经元接受外侧缰核(LHb)的输入, 然后投射到VTA多巴胺能神经元, 进而抑制多巴胺的释放.这三个脑区是奖赏环路的重要组成部分, 其中RMTg在阿片类物质激活的奖赏环路中尤为重要.阿片类物质主要通过抑制RMTg GABA能神经元使VTA多巴胺能神经元去抑制, 进而激活奖赏系统.因此, RMTg有望成为治疗药物成瘾(尤其是阿片成瘾)的一个重要靶点.此外, 胆碱类物质作用于RMTg的毒蕈碱受体能够抑制阿片类物质诱导的奖赏效应.未来研究应深入探讨RMTg调控的负性奖赏环路, 这对弱化觅药动机,促进消退和戒断具有重要意义.
图/表 1
图1RMTg是奖赏环路和阿片成瘾的中间调节器(参考Juarez & Han, 2016)
图1RMTg是奖赏环路和阿片成瘾的中间调节器(参考Juarez & Han, 2016)
参考文献 57
1 | Adamantidis A. R., Tsai H-C., Boutrel B., Zhang F., Stuber G. D., Budygin E. A ., et al. de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31(30), 10829-10835. doi: 10.1523/JNEUROSCI.2246-11.2011URLpmid: 3171183 |
2 | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing. |
3 | Balcita-Pedicino J. J., Omelchenko N., Bell R., & Sesack S. R . (2015). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519(6), 1143-1164. |
4 | Bourdy R., & Barrot M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neurosciences, 35(11), 681-690. doi: 10.1016/j.tins.2012.06.007URLpmid: 22824232 |
5 | Bowers M. S., Chen B. T., & Bonci A . (2010). AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future. Neuron, 67(1), 11-24. doi: 10.1016/j.neuron.2010.06.004URLpmid: 2904302 |
6 | Brown P. L., Palacorolla H., Brady D., Riegger K., Elmer G. I., & Shepard P. D . (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. The Journal of Neuroscience, 37(1), 217-225. doi: 10.1523/JNEUROSCI.1353-16.2017URLpmid: 5214632 |
7 | Fields H.L., &Margolis E.B . (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225. |
8 | Friedman A., Lax E., Dikshtein Y., Abraham L., Flaumenhaft Y., Sudai E ., et al. Yadid, G. (2010). Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology, 59(6), 452-459. doi: 10.1016/j.neuropharm.2010.06.008URLpmid: 20600170 |
9 | Gysling K., &Wang R.Y . (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277(1), 119-127. doi: 10.1016/0006-8993(83)90913-7URLpmid: 6315137 |
10 | Haber S.N., & Knutson B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26. doi: 10.1038/npp.2009.129URLpmid: 19812543 |
11 | Hong S., & Hikosaka O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720-729. doi: 10.1016/j.neuron.2008.09.035URLpmid: 19038227 |
12 | Hong S., Jhou T. C., Smith M., Saleem K. S., & Hikosaka O . (2011). Negative reward signals from lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. The Journal of Neuroscience, 31(32), 11457-11471. doi: 10.1523/JNEUROSCI.1384-11.2011URLpmid: 21832176 |
13 | Huff M.L., &LaLumiere R.T . (2015). The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology, 40(4), 861-873. doi: 10.1038/npp.2014.260URLpmid: 4330500 |
14 | Ikemoto S., & Bonci A. (2014). Neurocircuitry of drug reward. Neuropharmacology, 76(Part B), 329-341. |
15 | Jalabert M., Bourdy R., Courtin J., Veinante P., Manzoni O. J., Barrot M., & Georges F . (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450. doi: 10.1073/pnas.1105418108URLpmid: 21930931 |
16 | Jennings J. H., Sparta D. R., Stamatakis A. M., Ung R. L., Pleil K. E., Kash T. L., & Stuber G. D . (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228. doi: 10.1038/nature12041URLpmid: 3778934 |
17 | Jhou T. C., Fields H. L., Baxter M. G., Saper C. B., & Holland P. C . (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800. doi: 10.1016/j.neuron.2009.02.001 |
18 | Jhou T. C., Geisler S., Marinelli M., Degarmo B. A., & Zahm D. S . (2009). The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6), 566-596. doi: 10.1002/cne.21891URLpmid: 3116663 |
19 | Jhou T. C., Good C. H., Rowley C. S., Xu S-P., Wang H., Burnham N. W ., et al. Ikemoto, S. (2013). Cocaine drives aversive conditioning via delayed activation of dopamine- responsive habenular and midbrain pathways. The Journal of Neuroscience, 33(17), 7501-7512. doi: 10.1523/JNEUROSCI.3634-12.2013URLpmid: 23616555 |
20 | Ji H., &Shepard P.D . (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA (A) receptor-mediated mechanism. The Journal of Neuroscience, 27(26), 6923-6930. doi: 10.1523/JNEUROSCI.0958-07.2007URLpmid: 17596440 |
21 | Johnson L. R., Aylward R. L. M., Hussain Z., & Totterdell S . (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61(4), 851-865. doi: 10.1016/0306-4522(94)90408-1URLpmid: 7530817 |
22 | Johnson S.W., &North R.A . (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483-488. |
23 | Juarez B., & Han M-H. (2016). Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 41(10), 2424-2446. doi: 10.1038/npp.2016.32URLpmid: 26934955 |
24 | Kaufling J., & Aston-Jones G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35(28), 10290-10303. doi: 10.1523/JNEUROSCI.0715-15.2015URLpmid: 26180204 |
25 | Kaufling J., Veinante P., Pawlowski S. A., Freund-Mercier M-J., & Barrot M . (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. The Journal of Comparative Neurology, 513(6), 597-621. doi: 10.1002/cne.21983URLpmid: 19235223 |
26 | Kotecki L., Hearing M., McCall N. M., de Velasco, E. M. F., Pravetoni M., Arora D ., et al. Wickman, K. (2015). GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. The Journal of Neuroscience, 35(18), 7131-7142. doi: 10.1523/JNEUROSCI.5051-14.2015URLpmid: 4420781 |
27 | Lammel S., Hetzel A., H?ckel O., Jones I., Liss B., & Roeper J . (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773. doi: 10.1016/j.neuron.2008.01.022URLpmid: 18341995 |
28 | Lammel S., Ion D. I., Roeper J., & Malenka R. C . (2011). Projection-Specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862. doi: 10.1016/j.neuron.2011.03.025URLpmid: 21658580 |
29 | Lammel S., Lim B. K., Ran C., Huang K. W., Betley M. J., Tye K. M ., et al. Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212-217. doi: 10.1038/nature11527URLpmid: 23064228 |
30 | Lavezzi H.N., &Zahm D.S . (2011). The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system. Basal Ganglia, 1(4), 191-200. doi: 10.1016/j.baga.2011.08.003URLpmid: 3233474 |
31 | Lecca S., Melis M., Luchicchi A., Ennas M. G., Castelli M. P., Muntoni A. L., & Pistis M . (2011). Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology, 36(3), 589-602. doi: 10.1038/npp.2010.190URLpmid: 3055682 |
32 | Lecca S., Melis M., Luchicchi A., Muntoni A. L., & Pistis M . (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 37(5), 1164-1176. doi: 10.1038/npp.2011.302URLpmid: 3306878 |
33 | Lobb C. J., Wilson C. J., & Paladini C. A . (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol, 104(1), 403-413. doi: 10.1152/jn.00204.2010URLpmid: 20445035 |
34 | Matsui A., Jarvie B. C., Robinson B. G., Hentges S. T., & Williams J. T . (2014). Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron, 82(6), 1346-1356. doi: 10.1016/j.neuron.2014.04.030URLpmid: 24857021 |
35 | Matsui A., &Williams J.T . (2011). Opioid-Sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. The Journal of Neuroscience, 31(48), 17729-17735. doi: 10.1523/JNEUROSCI.4570-11.2011URLpmid: 22131433 |
36 | Matsumoto M., & Hikosaka O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115. doi: 10.1038/nature05860URLpmid: 17522629 |
37 | Matsumoto M., & Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841. |
38 | Miesenb?ck G. . (2009). The optogenetic catechism. Science, 326(5951), 395-399. |
39 | Paladini C. A., Celada P., & Tepper J. M . (1999). Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 89(3), 799-812. doi: 10.1016/S0306-4522(98)00355-8URLpmid: 10199614 |
40 | Petzel A., Bernard R., Poller W. C., & Veh R. W . (2017). Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. The Journal of Comparative neurology, 525(10), 2310-2327. doi: 10.1002/cne.24200URLpmid: 28295296 |
41 | Pignatelli M., & Bonci A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145-1157. doi: 10.1016/j.neuron.2015.04.015URLpmid: 26050034 |
42 | Rezayof A., Nazari-Serenjeh F., Zarrindast M-R., Sepehri H., & Delphi L . (2007). Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. European Journal of Pharmacology, 562(1-2), 92-102. doi: 10.1016/j.ejphar.2007.01.081URLpmid: 17336285 |
43 | Russo S.J., &Nestler E.J . (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625. doi: 10.1038/nrn3381 |
44 | Sánchez-Catalán M. J., Faivre F., Yalcin I., Muller M. A., Massotte D., Majchrzak M., & Barrot M . (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42(3), 638-648. doi: 10.1038/npp.2016.139URLpmid: 27468916 |
45 | Salas R., Baldwin P., de Biasi M., & Montague P. R . (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 36. doi: 10.3389/fnhum.2010.00036 doi: 10.3389/fnhum.2010.00036URLpmid: 20485575 |
46 | Sanchez-Catalan M. J., Kaufling J., Georges F., Veinante P., & Barrot M . (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216. doi: 10.1016/j.neuroscience.2014.09.025URLpmid: 25241061 |
47 | Stamatakis A. M., Jennings J. H., Ung R. L., Blair G. A., Weinberg R. J., Neve R. L ., et al. Stuber, G. D. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039-1053. doi: 10.1016/j.neuron.2013.08.023URLpmid: 3873746 |
48 | Stamatakis A.M., &Stuber G.D . (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15(8), 1105-1107. doi: 10.1038/nn.3145URLpmid: 3411914 |
49 | Steffensen S. C., Svingos A. L., Pickel V. M., & Henriksen S. J . (1998). Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. The Journal of Neuroscience, 18(19), 8003-8015. |
50 | Steidl S., Dhillon E. S., Sharma N., & Ludwig J . (2017). Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behavioural Brain Research, 323, 111-116. doi: 10.1016/j.bbr.2017.01.039URLpmid: 28143769 |
51 | Steidl S., Miller A. D., Blaha C. D., & Yeomans J. S . (2011). M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS ONE, 6(11), e27538. doi: 10.1371/journal.pone.0027538URLpmid: 22102904 |
52 | Steidl S., Myal S., & Wise R. A . (2015). Supplemental morphine infusion into the posterior ventral tegmentum extends the satiating effects of self-administered intravenous heroin. Pharmacology Biochemistry and Behavior, 134, 1-5. doi: 10.1016/j.pbb.2015.04.006URLpmid: 25913296 |
53 | Steidl S., Wasserman D. I., Blaha C. D., & Yeomans J. S . (2017). Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience & Biobehavioral Reviews, 83, 72-82. doi: 10.1016/j.neubiorev.2017.09.022URLpmid: 28951251 |
54 | Steinberg E. E., Keiflin R., Boivin J. R., Witten I. B., Deisseroth K., & Janak P. H . (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973. doi: 10.1038/nn.3413URLpmid: 23708143 |
55 | Wasserman D. I., Tan J. M. J., Kim J. C., & Yeomans J. S . (2016). Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. European Journal of Neuroscience, 44(1), 1761-1770. doi: 10.1111/ejn.13237URLpmid: 26990801 |
56 | Wasserman D. I., Wang H. G., Rashid A. J., Josselyn S. A., & Yeomans J. S . (2013). Cholinergic control of morphine- induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. European Journal of Neuroscience, 38(5), 2774-2785. doi: 10.1111/ejn.12279URLpmid: 23773170 |
57 | World Health Organ . (2010). ATLAS on substance use (2010): Resources for the prevention and treatment of substance use disorders. World Health Organ. Geneva. |
相关文章 3
[1] | 刘浩然, 张晨风, 杨莉. 心理韧性及其神经机制:来自非人类动物模型的证据[J]. 心理科学进展, 2019, 27(2): 312-321. |
[2] | 童薇, 陈桃林, 黄晓琦, 龚启勇, 方晓义. 背景性渴求与事件性渴求:区分心理渴求对 尼古丁成瘾的不同作用路径[J]. 心理科学进展, 2017, 25(11): 1932-1941. |
[3] | 杨玲;苏波波;张建勋;柳斌;卫晓芸;赵鑫. 物质成瘾人群金钱奖赏加工的异常机制及可恢复性[J]. 心理科学进展, 2015, 23(9): 1617-1626. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4567