删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

奖赏环路与阿片成瘾:喙内侧被盖核的调节作用

本站小编 Free考研考试/2022-01-01

吴静1, 崔睿思1, 孙翠翠2, 李新旺1()
1 首都师范大学心理学院, 北京 100037
2 华中师范大学心理学院, 武汉 430079
收稿日期:2018-05-03出版日期:2019-01-15发布日期:2018-11-23


基金资助:* 国家自然科学基金项目(31470989)

Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus

WU Jing1, CUI Ruisi1, SUN Cuicui2, LI Xinwang1()
1 School of Psychology, Capital Normal University, Beijing 100037, China
2 School of Psychology, Central China Normal University, Wuhan 430079, China
Received:2018-05-03Online:2019-01-15Published:2018-11-23







摘要/Abstract


摘要: 喙内侧被盖核(RMTg)位于腹侧被盖区(VTA)的尾部, 富含抑制性的γ-氨基丁酸(GABA)能神经元.RMTg是中脑边缘多巴胺系统的一个综合调节器.它的GABA能神经元接受外侧缰核(LHb)的输入, 然后投射到VTA多巴胺能神经元, 进而抑制多巴胺的释放.这三个脑区是奖赏环路的重要组成部分, 其中RMTg在阿片类物质激活的奖赏环路中尤为重要.阿片类物质主要通过抑制RMTg GABA能神经元使VTA多巴胺能神经元去抑制, 进而激活奖赏系统.因此, RMTg有望成为治疗药物成瘾(尤其是阿片成瘾)的一个重要靶点.此外, 胆碱类物质作用于RMTg的毒蕈碱受体能够抑制阿片类物质诱导的奖赏效应.未来研究应深入探讨RMTg调控的负性奖赏环路, 这对弱化觅药动机,促进消退和戒断具有重要意义.



图1RMTg是奖赏环路和阿片成瘾的中间调节器(参考Juarez & Han, 2016)
图1RMTg是奖赏环路和阿片成瘾的中间调节器(参考Juarez & Han, 2016)







1 Adamantidis A. R., Tsai H-C., Boutrel B., Zhang F., Stuber G. D., Budygin E. A ., et al. de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31(30), 10829-10835.
doi: 10.1523/JNEUROSCI.2246-11.2011URLpmid: 3171183
2 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.
3 Balcita-Pedicino J. J., Omelchenko N., Bell R., & Sesack S. R . (2015). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519(6), 1143-1164.
4 Bourdy R., & Barrot M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neurosciences, 35(11), 681-690.
doi: 10.1016/j.tins.2012.06.007URLpmid: 22824232
5 Bowers M. S., Chen B. T., & Bonci A . (2010). AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future. Neuron, 67(1), 11-24.
doi: 10.1016/j.neuron.2010.06.004URLpmid: 2904302
6 Brown P. L., Palacorolla H., Brady D., Riegger K., Elmer G. I., & Shepard P. D . (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. The Journal of Neuroscience, 37(1), 217-225.
doi: 10.1523/JNEUROSCI.1353-16.2017URLpmid: 5214632
7 Fields H.L., &Margolis E.B . (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225.
8 Friedman A., Lax E., Dikshtein Y., Abraham L., Flaumenhaft Y., Sudai E ., et al. Yadid, G. (2010). Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology, 59(6), 452-459.
doi: 10.1016/j.neuropharm.2010.06.008URLpmid: 20600170
9 Gysling K., &Wang R.Y . (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277(1), 119-127.
doi: 10.1016/0006-8993(83)90913-7URLpmid: 6315137
10 Haber S.N., & Knutson B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26.
doi: 10.1038/npp.2009.129URLpmid: 19812543
11 Hong S., & Hikosaka O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720-729.
doi: 10.1016/j.neuron.2008.09.035URLpmid: 19038227
12 Hong S., Jhou T. C., Smith M., Saleem K. S., & Hikosaka O . (2011). Negative reward signals from lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. The Journal of Neuroscience, 31(32), 11457-11471.
doi: 10.1523/JNEUROSCI.1384-11.2011URLpmid: 21832176
13 Huff M.L., &LaLumiere R.T . (2015). The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology, 40(4), 861-873.
doi: 10.1038/npp.2014.260URLpmid: 4330500
14 Ikemoto S., & Bonci A. (2014). Neurocircuitry of drug reward. Neuropharmacology, 76(Part B), 329-341.
15 Jalabert M., Bourdy R., Courtin J., Veinante P., Manzoni O. J., Barrot M., & Georges F . (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450.
doi: 10.1073/pnas.1105418108URLpmid: 21930931
16 Jennings J. H., Sparta D. R., Stamatakis A. M., Ung R. L., Pleil K. E., Kash T. L., & Stuber G. D . (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228.
doi: 10.1038/nature12041URLpmid: 3778934
17 Jhou T. C., Fields H. L., Baxter M. G., Saper C. B., & Holland P. C . (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800.
doi: 10.1016/j.neuron.2009.02.001
18 Jhou T. C., Geisler S., Marinelli M., Degarmo B. A., & Zahm D. S . (2009). The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6), 566-596.
doi: 10.1002/cne.21891URLpmid: 3116663
19 Jhou T. C., Good C. H., Rowley C. S., Xu S-P., Wang H., Burnham N. W ., et al. Ikemoto, S. (2013). Cocaine drives aversive conditioning via delayed activation of dopamine- responsive habenular and midbrain pathways. The Journal of Neuroscience, 33(17), 7501-7512.
doi: 10.1523/JNEUROSCI.3634-12.2013URLpmid: 23616555
20 Ji H., &Shepard P.D . (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA (A) receptor-mediated mechanism. The Journal of Neuroscience, 27(26), 6923-6930.
doi: 10.1523/JNEUROSCI.0958-07.2007URLpmid: 17596440
21 Johnson L. R., Aylward R. L. M., Hussain Z., & Totterdell S . (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61(4), 851-865.
doi: 10.1016/0306-4522(94)90408-1URLpmid: 7530817
22 Johnson S.W., &North R.A . (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483-488.
23 Juarez B., & Han M-H. (2016). Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 41(10), 2424-2446.
doi: 10.1038/npp.2016.32URLpmid: 26934955
24 Kaufling J., & Aston-Jones G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35(28), 10290-10303.
doi: 10.1523/JNEUROSCI.0715-15.2015URLpmid: 26180204
25 Kaufling J., Veinante P., Pawlowski S. A., Freund-Mercier M-J., & Barrot M . (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. The Journal of Comparative Neurology, 513(6), 597-621.
doi: 10.1002/cne.21983URLpmid: 19235223
26 Kotecki L., Hearing M., McCall N. M., de Velasco, E. M. F., Pravetoni M., Arora D ., et al. Wickman, K. (2015). GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. The Journal of Neuroscience, 35(18), 7131-7142.
doi: 10.1523/JNEUROSCI.5051-14.2015URLpmid: 4420781
27 Lammel S., Hetzel A., H?ckel O., Jones I., Liss B., & Roeper J . (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
doi: 10.1016/j.neuron.2008.01.022URLpmid: 18341995
28 Lammel S., Ion D. I., Roeper J., & Malenka R. C . (2011). Projection-Specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862.
doi: 10.1016/j.neuron.2011.03.025URLpmid: 21658580
29 Lammel S., Lim B. K., Ran C., Huang K. W., Betley M. J., Tye K. M ., et al. Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212-217.
doi: 10.1038/nature11527URLpmid: 23064228
30 Lavezzi H.N., &Zahm D.S . (2011). The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system. Basal Ganglia, 1(4), 191-200.
doi: 10.1016/j.baga.2011.08.003URLpmid: 3233474
31 Lecca S., Melis M., Luchicchi A., Ennas M. G., Castelli M. P., Muntoni A. L., & Pistis M . (2011). Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology, 36(3), 589-602.
doi: 10.1038/npp.2010.190URLpmid: 3055682
32 Lecca S., Melis M., Luchicchi A., Muntoni A. L., & Pistis M . (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 37(5), 1164-1176.
doi: 10.1038/npp.2011.302URLpmid: 3306878
33 Lobb C. J., Wilson C. J., & Paladini C. A . (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol, 104(1), 403-413.
doi: 10.1152/jn.00204.2010URLpmid: 20445035
34 Matsui A., Jarvie B. C., Robinson B. G., Hentges S. T., & Williams J. T . (2014). Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron, 82(6), 1346-1356.
doi: 10.1016/j.neuron.2014.04.030URLpmid: 24857021
35 Matsui A., &Williams J.T . (2011). Opioid-Sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. The Journal of Neuroscience, 31(48), 17729-17735.
doi: 10.1523/JNEUROSCI.4570-11.2011URLpmid: 22131433
36 Matsumoto M., & Hikosaka O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115.
doi: 10.1038/nature05860URLpmid: 17522629
37 Matsumoto M., & Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841.
38 Miesenb?ck G. . (2009). The optogenetic catechism. Science, 326(5951), 395-399.
39 Paladini C. A., Celada P., & Tepper J. M . (1999). Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 89(3), 799-812.
doi: 10.1016/S0306-4522(98)00355-8URLpmid: 10199614
40 Petzel A., Bernard R., Poller W. C., & Veh R. W . (2017). Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. The Journal of Comparative neurology, 525(10), 2310-2327.
doi: 10.1002/cne.24200URLpmid: 28295296
41 Pignatelli M., & Bonci A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145-1157.
doi: 10.1016/j.neuron.2015.04.015URLpmid: 26050034
42 Rezayof A., Nazari-Serenjeh F., Zarrindast M-R., Sepehri H., & Delphi L . (2007). Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. European Journal of Pharmacology, 562(1-2), 92-102.
doi: 10.1016/j.ejphar.2007.01.081URLpmid: 17336285
43 Russo S.J., &Nestler E.J . (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
doi: 10.1038/nrn3381
44 Sánchez-Catalán M. J., Faivre F., Yalcin I., Muller M. A., Massotte D., Majchrzak M., & Barrot M . (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42(3), 638-648.
doi: 10.1038/npp.2016.139URLpmid: 27468916
45 Salas R., Baldwin P., de Biasi M., & Montague P. R . (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 36. doi: 10.3389/fnhum.2010.00036
doi: 10.3389/fnhum.2010.00036URLpmid: 20485575
46 Sanchez-Catalan M. J., Kaufling J., Georges F., Veinante P., & Barrot M . (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216.
doi: 10.1016/j.neuroscience.2014.09.025URLpmid: 25241061
47 Stamatakis A. M., Jennings J. H., Ung R. L., Blair G. A., Weinberg R. J., Neve R. L ., et al. Stuber, G. D. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039-1053.
doi: 10.1016/j.neuron.2013.08.023URLpmid: 3873746
48 Stamatakis A.M., &Stuber G.D . (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15(8), 1105-1107.
doi: 10.1038/nn.3145URLpmid: 3411914
49 Steffensen S. C., Svingos A. L., Pickel V. M., & Henriksen S. J . (1998). Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. The Journal of Neuroscience, 18(19), 8003-8015.
50 Steidl S., Dhillon E. S., Sharma N., & Ludwig J . (2017). Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behavioural Brain Research, 323, 111-116.
doi: 10.1016/j.bbr.2017.01.039URLpmid: 28143769
51 Steidl S., Miller A. D., Blaha C. D., & Yeomans J. S . (2011). M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS ONE, 6(11), e27538.
doi: 10.1371/journal.pone.0027538URLpmid: 22102904
52 Steidl S., Myal S., & Wise R. A . (2015). Supplemental morphine infusion into the posterior ventral tegmentum extends the satiating effects of self-administered intravenous heroin. Pharmacology Biochemistry and Behavior, 134, 1-5.
doi: 10.1016/j.pbb.2015.04.006URLpmid: 25913296
53 Steidl S., Wasserman D. I., Blaha C. D., & Yeomans J. S . (2017). Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience & Biobehavioral Reviews, 83, 72-82.
doi: 10.1016/j.neubiorev.2017.09.022URLpmid: 28951251
54 Steinberg E. E., Keiflin R., Boivin J. R., Witten I. B., Deisseroth K., & Janak P. H . (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973.
doi: 10.1038/nn.3413URLpmid: 23708143
55 Wasserman D. I., Tan J. M. J., Kim J. C., & Yeomans J. S . (2016). Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. European Journal of Neuroscience, 44(1), 1761-1770.
doi: 10.1111/ejn.13237URLpmid: 26990801
56 Wasserman D. I., Wang H. G., Rashid A. J., Josselyn S. A., & Yeomans J. S . (2013). Cholinergic control of morphine- induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. European Journal of Neuroscience, 38(5), 2774-2785.
doi: 10.1111/ejn.12279URLpmid: 23773170
57 World Health Organ . (2010). ATLAS on substance use (2010): Resources for the prevention and treatment of substance use disorders. World Health Organ. Geneva.




[1]刘浩然, 张晨风, 杨莉. 心理韧性及其神经机制:来自非人类动物模型的证据[J]. 心理科学进展, 2019, 27(2): 312-321.
[2]童薇, 陈桃林, 黄晓琦, 龚启勇, 方晓义. 背景性渴求与事件性渴求:区分心理渴求对 尼古丁成瘾的不同作用路径[J]. 心理科学进展, 2017, 25(11): 1932-1941.
[3]杨玲;苏波波;张建勋;柳斌;卫晓芸;赵鑫. 物质成瘾人群金钱奖赏加工的异常机制及可恢复性[J]. 心理科学进展, 2015, 23(9): 1617-1626.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4567
相关话题/物质 心理 科学 心理学院 系统

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 社会分类的特性,维度及心理效应
    佐斌1,温芳芳1(),宋静静2,代涛涛11华中师范大学心理学院暨社会心理研究中心,青少年网络心理与行为教育部重点实验室,武汉4300792中国地质大学应用心理研究所,武汉430070收稿日期:2017-10-18出版日期:2019-01-15发布日期:2018-11-23基金资助:*国家自然科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 心理学视角下的极端膜拜伤害问题
    任定成1,何晨宏1,2,陈天嘉1()1.中国科学院大学膜拜现象研究中心2.中国科学院大学人文学院,北京100049收稿日期:2018-05-28出版日期:2018-12-15发布日期:2018-10-30通讯作者:陈天嘉E-mail:chentianjia@ucas.ac.cn作者简介:任定成,北京 ...
    本站小编 Free考研考试 2022-01-01
  • 《心理科学进展》2018年度审稿专家名录
    出版日期:2019-01-15发布日期:2019-01-03Online:2019-01-15Published:2019-01-03摘要/Abstract摘要:参考文献相关文章0Norelatedarticlesfound!PDF全文下载地址:http://journal.psych.ac.cn/ ...
    本站小编 Free考研考试 2022-01-01
  • 未来自我连续性及其对个体心理和行为的影响
    刘云芝,杨紫嫣,王娱琦,陈鋆,蔡华俭()中国科学院心理研究所行为科学重点实验室;中国科学院心理研究所人格与社会心理研究中心,北京100101中国科学院大学,北京100049收稿日期:2017-10-23出版日期:2018-12-15发布日期:2018-10-30通讯作者:蔡华俭E-mail:caih ...
    本站小编 Free考研考试 2022-01-01
  • 系统合理化何以形成——三种不同的解释视角
    杨沈龙1,郭永玉2(),喻丰1(),饶婷婷1,赵靓1,许丽颖11.西安交通大学人文社会科学学院社会心理学研究所,西安7100492.南京师范大学心理学院,南京210097收稿日期:2017-10-17出版日期:2018-12-15发布日期:2018-10-30通讯作者:郭永玉,喻丰E-mail:yy ...
    本站小编 Free考研考试 2022-01-01
  • 从“理性人”到“行为人”:公共政策研究的行为科学转向
    吕小康1,武迪1,隋晓阳1,汪新建1,程婕婷2()1.南开大学周恩来政府管理学院社会心理学系,天津3003502.山东大学(威海)法学院社会工作系,威海264209收稿日期:2017-11-13出版日期:2018-12-15发布日期:2018-10-30通讯作者:程婕婷E-mail:chengjie ...
    本站小编 Free考研考试 2022-01-01
  • 个人主义上升, 集体主义式微?——全球文化变迁与民众心理变化
    黄梓航1,2,3,敬一鸣1,2,3,喻丰4,古若雷1,2,3,周欣悦5,张建新3,6,蔡华俭1,2,3()1中国科学院心理研究所行为科学重点实验室,北京1001012中国科学院心理研究所人格与社会心理研究中心,北京1001013中国科学院大学,北京1000494西安交通大学人文社会科学学院,西安71 ...
    本站小编 Free考研考试 2022-01-01
  • 积极心理干预是“新瓶装旧酒”吗?
    段文杰1(),卜禾21武汉大学社会学系,武汉4300002香港城市大学应用社会科学系,香港收稿日期:2017-12-25出版日期:2018-10-15发布日期:2018-08-27通讯作者:段文杰E-mail:duan.w@whu.edu.cn基金资助:*武汉大学人文社会科学青年****学术发展计划 ...
    本站小编 Free考研考试 2022-01-01
  • 为他人做决策:多维度心理机制与决策体验
    陆静怡*(),尚雪松华东师范大学心理与认知科学学院,上海200062收稿日期:2017-12-24出版日期:2018-09-15发布日期:2018-07-30通讯作者:陆静怡E-mail:jylu@psy.ecnu.edu.cn基金资助:国家自然科学基金(71771088);上海市教育发展基金会和上 ...
    本站小编 Free考研考试 2022-01-01
  • 舌尖上的“自虐”——食辣中的心理学问题
    傅于玲1,2,邓富民1,*(),杨帅3,徐玖平11四川大学商学院,成都6100412成都理工大学心理健康教育中心,成都6100593重庆邮电大学教育发展研究院,重庆400065收稿日期:2017-10-16出版日期:2018-09-15发布日期:2018-07-30通讯作者:邓富民E-mail:de ...
    本站小编 Free考研考试 2022-01-01