1辽宁师范大学心理学院, 大连 116029
2大连小海豚自闭症儿童康复中心, 大连 116000
收稿日期:
2017-05-31出版日期:
2018-08-15发布日期:
2018-07-02通讯作者:
孙岩E-mail:sun9199@163.com基金资助:
教育部人文社会科学规划基金项目(17YJA190011)The influence factors and neural mechanisms of inhibitory control in autism spectrum disorders
SUN Yan1(), FANG Lin1, WANG Tingyu1, CUI Li21 Department of Psychology, Liaoning Normal University, Dalian 116029, China
2 Dalian Little Dolphin Autism Care Center, Dalian 116000, China
Received:
2017-05-31Online:
2018-08-15Published:
2018-07-02Contact:
SUN Yan E-mail:sun9199@163.com摘要/Abstract
摘要: 自闭症谱系障碍(ASD)是一种起源于儿童期的神经发育障碍, ASD的重复刻板行为与其抑制控制发展有密切关系。使用Go/No-go、Flanker及Stroop等范式的研究发现, ASD者抑制控制受损主要表现为反应抑制和干扰抑制能力存在缺陷; 其主要影响因素是任务状态、被试年龄及取样; 涉及的脑区和脑网络集中在前额皮层、前扣带回和基底神经节; 涉及的基因集中在谷氨酸盐、γ-氨基丁酸与5-羟色胺三种神经递质。未来应从脑机制研究入手, 综合考虑任务状态、个体特征对研究结果造成的影响, 并着力开发更有效的干预模式。
图/表 1
表1ASD与正常被试抑制控制相关脑区激活的比较
资料来源 | 被试及数量 | 年龄范围(岁) | 任务范式 | 测量工具 | 研究结果 |
---|---|---|---|---|---|
Schmitz et al., 2006 | ASD:8 正常组:10 | 18~52 | Go/No-go任务 Stroop任务 | fMRI | ASD组左下眶额叶皮层、右IFG与左脑岛激活显著增加, 右侧额下回灰质密度增加 |
Kana et al., 2007 | ASD:12 正常组:12 | 19.1~34.5 19.3~25.7 | 包含有工作记忆成分的Go/No-go任务 | fMRI | ASD组ACC激活降低, 前脑岛激活减少; ACC与右侧额-顶抑制脑网络的同步性更低 |
Chan et al., 2011 | ASD:20 正常组:20 | 7~14 7~14 | Go/No-go任务 | EEG | ASD组在No-go条件下的ACC激活显著低于正常组 |
Langen et al., 2012 | ASD:21 正常组:22 | 19~44 19~44 | Go/No-go任务 | sMRI (structural MRI) DTI (diffusion tensor imaging) | ASD大脑总体白质体积显著小于正常被试, 连接壳核与前额皮层之间的白质连接强度减弱 |
Duerden et al., 2013 | ASD:19 正常组:20 | 19.6~39.4 20.8~43.4 | 面孔表情识别的 Go/No-go任务 | fMRI | 正常组激活VLPFC、DLPFC、楔前叶、ACC、前脑岛、梭状回、顶下小叶和颞中回, ASD组的VLPFC和右侧梭状回激活更大 |
Daly et al., 2014 | ASD:14 正常组:14 | 18~44 20~42 | Go/No-go任务 | fMRI | ASD组的额下皮质区、基底神经节、丘脑、小脑存在激活异常 |
Solomon et al., 2014 | ASD1:13 ASD2:14 正常组1:13 正常组2:14 | 12~15 16~18 12~15 16~18 | 准备执行优势反应抑制任务(Preparing to Overcome Prepotency “POP” Task ) | fMRI | 16~18岁组的ASD在VLPFC和双侧ACC之间的功能连接增强, 16~18岁组的ASD的左顶叶激活减少 |
Padmanabhan et al., 2015 | ASD1: 8 ASD2: 11 正常组1:14 正常组2:9 | 19~33 13~17 18~31 12~17 | 反眼跳任务与视觉 引导任务(visually guided saccade, VGS) | fMRI | ASD青少年壳核与楔前叶激活更大, 顶下小叶的激活水平下降 |
Velasquez et al., 2017 | ASD: 19 正常组:22 | 18~35 20~46 | 面孔表情识别 Go/No-go任务 | fMRI | ASD组角回与梭状回激活更大, ASD组ACC与楔前叶激活降低 |
表1ASD与正常被试抑制控制相关脑区激活的比较
资料来源 | 被试及数量 | 年龄范围(岁) | 任务范式 | 测量工具 | 研究结果 |
---|---|---|---|---|---|
Schmitz et al., 2006 | ASD:8 正常组:10 | 18~52 | Go/No-go任务 Stroop任务 | fMRI | ASD组左下眶额叶皮层、右IFG与左脑岛激活显著增加, 右侧额下回灰质密度增加 |
Kana et al., 2007 | ASD:12 正常组:12 | 19.1~34.5 19.3~25.7 | 包含有工作记忆成分的Go/No-go任务 | fMRI | ASD组ACC激活降低, 前脑岛激活减少; ACC与右侧额-顶抑制脑网络的同步性更低 |
Chan et al., 2011 | ASD:20 正常组:20 | 7~14 7~14 | Go/No-go任务 | EEG | ASD组在No-go条件下的ACC激活显著低于正常组 |
Langen et al., 2012 | ASD:21 正常组:22 | 19~44 19~44 | Go/No-go任务 | sMRI (structural MRI) DTI (diffusion tensor imaging) | ASD大脑总体白质体积显著小于正常被试, 连接壳核与前额皮层之间的白质连接强度减弱 |
Duerden et al., 2013 | ASD:19 正常组:20 | 19.6~39.4 20.8~43.4 | 面孔表情识别的 Go/No-go任务 | fMRI | 正常组激活VLPFC、DLPFC、楔前叶、ACC、前脑岛、梭状回、顶下小叶和颞中回, ASD组的VLPFC和右侧梭状回激活更大 |
Daly et al., 2014 | ASD:14 正常组:14 | 18~44 20~42 | Go/No-go任务 | fMRI | ASD组的额下皮质区、基底神经节、丘脑、小脑存在激活异常 |
Solomon et al., 2014 | ASD1:13 ASD2:14 正常组1:13 正常组2:14 | 12~15 16~18 12~15 16~18 | 准备执行优势反应抑制任务(Preparing to Overcome Prepotency “POP” Task ) | fMRI | 16~18岁组的ASD在VLPFC和双侧ACC之间的功能连接增强, 16~18岁组的ASD的左顶叶激活减少 |
Padmanabhan et al., 2015 | ASD1: 8 ASD2: 11 正常组1:14 正常组2:9 | 19~33 13~17 18~31 12~17 | 反眼跳任务与视觉 引导任务(visually guided saccade, VGS) | fMRI | ASD青少年壳核与楔前叶激活更大, 顶下小叶的激活水平下降 |
Velasquez et al., 2017 | ASD: 19 正常组:22 | 18~35 20~46 | 面孔表情识别 Go/No-go任务 | fMRI | ASD组角回与梭状回激活更大, ASD组ACC与楔前叶激活降低 |
参考文献 120
1 | 蔡厚德, 刘昌 . ( 2004). 大脑前扣带回皮层与执行功能. 心理科学进展, 12( 5), 643-650. |
2 | 陈桃林, 罗跃嘉 . ( 2010). 基因多态性对情绪调节神经回路的影响. 心理科学进展, 18( 9), 1440-1448. |
3 | 苏彦捷, 于晶 . ( 2015). 执行功能与心理理论关系的元分析: 抑制控制和灵活转换的作用. 心理发展与教育, 31( 1), 51-61. |
4 | 王君, 陈天勇 . ( 2012). 抑制控制与高级认知功能的关系. 心理科学进展, 20( 11), 1768-1778. |
5 | 武文佼, 张鹏 . ( 2016). 自闭症谱系障碍的生物基础. 心理科学进展, 24( 5), 739-752. |
6 | 杨娟, 周世杰, 张拉艳, 丁宇, 张刚, 姚树桥 . ( 2008). 心理理论和执行功能关系的探讨——来自孤独症和多动症的证据. 中国临床心理学杂志, 16( 3), 225-229. |
7 | 杨苏勇, 黄宇霞, 张慧君, 罗跃嘉 . ( 2010). 情绪影响行为抑制的脑机制. 心理科学进展, 18( 4), 605-615. |
8 | 张芬, 王穗苹, 杨娟华, 冯刚毅 . ( 2015). 自闭症谱系障碍者异常的大脑功能连接. 心理科学进展, 23( 7), 1196-1204. |
9 | 赵鑫, 贾丽娜, 昝香怡 . ( 2016). 干扰控制的训练: 内容、效果与机制. 心理科学进展, 24( 6), 900-908. |
10 | Adams, N. C., & Jarrold, C . ( 2012). Inhibition in autism: Children with autism have difficulty inhibiting irrelevant distractors but not prepotent responses. Journal of Autism & Developmental Disorders, 42( 6), 1052-1063. |
11 | Ajram L. A., Horder J., Mendez M. A., Galanopoulos A., Brennan L. P., Wichers R. H., .. McAlonan G. M . ( 2017). Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Translational Psychiatry, 7, e1137. doi: 10.1038/tp.2017.104URL |
12 | Alexander A. L., Lee J. E., Lazar M., Boudos R., Dubray M. B., Oakes T. R., .. Lainhart J. E . ( 2007). Diffusion tensor imaging of the corpus callosum in autism. NeuroImage, 34( 1), 61-73. doi: 10.1016/j.neuroimage.2006.08.032URL |
13 | American Psychiatric Association. ( 2013). Diagnostic and statistical manual of mental disorders: DSM 5. New York: American Psychiatric Publishing. |
14 | Barendse E. M., Hendriks M. P. H., Jansen J. F. A., Backes W. H., Hofman P. A. M., Thoonen G., … Aldenkamp A. P . ( 2013). Working memory deficits in high-functioning adolescents with autism spectrum disorders: Neuropsychological and neuroimaging correlates. Journal of Neurodevelopmental Disorders, 5( 1), 14. doi: 10.1186/1866-1955-5-14URL |
15 | Benikos N., Johnstone S. J., & Roodenrys S. J . ( 2013). Short-term training in the Go/Nogo task: Behavioural and neural changes depend on task demands. International Journal of Psychophysiology, 87( 3), 301-312. doi: 10.1016/j.ijpsycho.2012.12.001URL |
16 | Beste C., Ness V., Lukas C., Hoffmann R., Stüwe S., Falkenstein M., & Saft C . ( 2012). Mechanisms mediating parallel action monitoring in fronto-striatal circuits. NeuroImage, 62( 1), 137-146. doi: 10.1016/j.neuroimage.2012.05.019URL |
17 | Beste C., Mückschel M., Elben S., Hartmann C. J., McIntyre C. C., Saft C., .. Wojtecki L . ( 2015). Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease. Brain Structure and Function, 220( 4), 2441-2448. doi: 10.1007/s00429-014-0805-xURL |
18 | Bishop, D. V. M., & Norbury, C. F . ( 2005). Executive functions in children with communication impairments, in relation to autistic symptomatology. Autism, 9( 1), 29-43. doi: 10.1177/1362361305049028URL |
19 | Brian J. A., Tipper S. P., Weaver B., & Bryson S. E . ( 2003). Inhibitory mechanisms in autism spectrum disorders: Typical selective inhibition of location versus facilitated perceptual processing. Journal of Child Psychology and Psychiatry, 44( 4), 552-560. doi: 10.1111/jcpp.2003.44.issue-4URL |
20 | Carlisi C. O., Norman L. J., Lukito S. S., Radua J., Mataix-Cols D., & Rubia K . ( 2017). Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder. Biological Psychiatry, 82( 2), 83-102. doi: 10.1016/j.biopsych.2016.10.006URL |
21 | Carlson, S. M., & Moses, L. J . ( 2001). Individual differences in inhibitory control and children's theory of mind. Child Development, 72( 4), 1032-1053. doi: 10.1111/cdev.2001.72.issue-4URL |
22 | Carlson S. M., Moses L. J., & Breton C . ( 2002). How specific is the relation between executive function and theory of mind? Contributions of inhibitory control and working memory. Infant & Child Development, 11( 2), 73-92. |
23 | Casanova M. F., Buxhoeveden D. P., Switala A. E., & Roy E . ( 2002). Minicolumnar pathology in autism. Neurology, 58( 3), 428-432. doi: 10.1212/WNL.58.3.428URL |
24 | Casanova M. F., van Kooten, I. A. J., Switala A. E., van Engeland H., Heinsen H., Steinbusch H. W. M., .. Schmitz C . ( 2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112( 3), 287-303. doi: 10.1007/s00401-006-0085-5URL |
25 | Chan A. S., Han Y. M. Y., Leung W. W. M., Leung C., Wong V. C. N., & Cheung M. C . ( 2011). Abnormalities in the anterior cingulate cortex associated with attentional and inhibitory control deficits: A neurophysiological study on children with autism spectrum disorders. Research in Autism Spectrum Disorders, 5( 1), 254-266. doi: 10.1016/j.rasd.2010.04.007URL |
26 | Chew W. S., Shalini S. M., Torta F. T., Wenk M. R., Stohler C., Yeo J. F., .. Ong W. Y . ( 2017). Role of prefrontal cortical calcium-independent phospholipase A2 in antinociceptive effect of the norepinephrine reuptake inhibitor antidepresssant maprotiline. Neuroscience, 340, 91-100. doi: 10.1016/j.neuroscience.2016.10.037URL |
27 | Chmielewski, W. X., & Beste, C . ( 2015). Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective. Progress in Neurobiology, 124, 49-83. doi: 10.1016/j.pneurobio.2014.11.002URL |
28 | Chmielewski W. X., Yildiz A., & Beste C . ( 2014). The neural architecture of age-related dual-task interferences. Frontiers in Aging Neuroscience, 6, 193. |
29 | Christ S. E., Holt D. D., White D. A., & Green L . ( 2007). Inhibitory control in children with autism spectrum disorder. Journal of Autism & Developmental Disorders, 37( 6), 1155-1165. |
30 | Christ S. E., Kester L. E., Bodner K. E., & Miles J. H . ( 2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25( 6), 690-701. doi: 10.1037/a0024256URL |
31 | Clark, J. M . ( 1996). Contributions of inhibitory mechanisms to unified theory in neuroscience and psychology. Brain & Cognition, 30( 1), 127-152. |
32 | Congdon E., Constable R. T., Lesch K. P., & Canli T . ( 2009). Influence of SLC6A3 and COMT variation on neural activation during response inhibition. Biological Psychology, 81( 3), 144-152. doi: 10.1016/j.biopsycho.2009.03.005URL |
33 | Conti E., Mitra J., Calderoni S., Pannek K., Shen K. K., Pagnozzi A., .. Guzzetta A . ( 2017). Network over- connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: A diffusion MRI study. Human Brain Mapping, 38( 5), 2333-2344. doi: 10.1002/hbm.v38.5URL |
34 | Courchesne E., Mouton P. R., Calhoun M. E., Semendeferi K., Ahrens-Barbeau C., Hallet M. J., .. Pierce K . ( 2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306( 18), 2001-2010. doi: 10.1001/jama.2011.1638URL |
35 | Coxon J. P., Stinear C. M., & Byblow W. D . ( 2007). Selective inhibition of movement. Journal of Neurophysiology, 97(3), 2480-2489. doi: 10.1152/jn.01284.2006URL |
36 | Cramer S. C., Sur M., Dobkin B. H., O'Brien C., Sanger T. D., Trojanowski J. Q., .. Vinogradov S . ( 2011). Harnessing neuroplasticity for clinical applications. Brain, 134, 1591-1609. doi: 10.1093/brain/awr039URL |
37 | Daly E., Ecker C., Hallahan B., Deeley Q., Craig M., Murphy C., .. Murphy, D. G. M . ( 2014). Response inhibition and serotonin in autism: A functional MRI study using acute tryptophan depletion. Brain, 137( 9), 2600-2610. doi: 10.1093/brain/awu178URL |
38 | Diamond, A . ( 2013). Executive functions. Annual Review of Psychology, 64( 1), 135-168. doi: 10.1146/annurev-psych-113011-143750URL |
39 | Duerden E. G., Taylor M. J., Soorya L. V., Wang T., Fan J., & Anagnostou E . ( 2013). Neural correlates of inhibition of socially relevant stimuli in adults with autism spectrum disorder. Brain Research, 1533, 80-90. doi: 10.1016/j.brainres.2013.08.021URL |
40 | El-Tarras A. E., Awad N. S., Mitwaly N., Alsulaimani A. A., & Said M. M . ( 2012). Association between polymorphisms of SLC6A3 and DRD1 genes and autism among Saudi Arabia Taif population using PCR-restriction fragment length polymorphism (PCR-RFLP). African Journal of Biotechnology, 11( 54), 11665-11670. |
41 | Estes A., Shaw D. W. W., Sparks B. F., Friedman S., Giedd J. N., Dawson G., .. Dager S. R . ( 2011). Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Research, 4( 3), 212-220. doi: 10.1002/aur.193URL |
42 | Faja, S., & Dawson, G . ( 2015). Reduced delay of gratification and effortful control among young children with autism spectrum disorders. Autism, 19( 1), 91-101. doi: 10.1177/1362361313512424URL |
43 | Freeman L. M., Locke J., Rotheram-Fuller E., & Mandell D . ( 2017). Brief report: Examining executive and social functioning in elementary-aged children with autism. Journal of Autism & Developmental Disorders, 47( 6), 1890-1895. |
44 | Frye R. E., Casanova M. F., Fatemi S. H., Folsom T. D., Reutiman T. J., Brown G. L., .. Adams J. B . ( 2016). Neuropathological mechanisms of seizures in autism spectrum disorder. Frontiers in Neuroscience, 10, 192. |
45 | Gadow K. D., Pinsonneault J. K., Perlman G., & Sadee W . ( 2014). Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder. Research in Developmental Disabilities, 35( 7), 1658-1665. doi: 10.1016/j.ridd.2014.04.007URL |
46 | Geurts H. M., van den Bergh, S. F. W. M., & Ruzzano L . ( 2014). Prepotent response inhibition and interference control in autism spectrum disorders: Two meta-analyses. Autism Research, 7( 4), 407-420. doi: 10.1002/aur.2014.7.issue-4URL |
47 | Giuliano A., Saviozzi I., Brambilla P., Muratori F., Retico A., & Calderoni S . ( 2017). The effect of age, sex and clinical features on the volume of corpus callosum in pre-schoolers with autism spectrum disorder: A case-control study. European Journal of Neuroscience, 1-21. |
48 | Hala S., Hug S., & Henderson A . ( 2003). Executive function and false-belief understanding in preschool children: Two tasks are harder than one. Journal of Cognition & Development, 4( 3), 275-298. |
49 | Haznedar M. M., Buchsbaum M. S., Hazlett E. A., LiCalzi E. M., Cartwright C., & Hollander E . ( 2006). Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. American Journal of Psychiatry, 163( 7), 1252-1263. doi: 10.1176/ajp.2006.163.7.1252URL |
50 | Herbert M. R., Ziegler D. A., Deutsch C. K., O'Brien L. M., Lange N., Bakardjiev A., .. Caviness V. S . ( 2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126( 5), 1182-1192. doi: 10.1093/brain/awg110URL |
51 | Howard S. J., Johnson J., & Pascual-Leone J . ( 2014). Clarifying inhibitory control: Diversity and development of attentional inhibition. Cognitive Development, 31, 1-21. doi: 10.1016/j.cogdev.2014.03.001URL |
52 | Howlin, P . ( 2003). Outcome in high-functioning adults with autism with and without early language delays: Implications for the differentiation between autism and asperger syndrome. Journal of Autism & Developmental Disorders, 33( 1), 3-13. |
53 | Humphrey, G., & Dumontheil, I . ( 2016). Development of risk-taking, perspective-taking, and inhibitory control during adolescence. Developmental Neuropsychology, 41( 1-2), 59-76. doi: 10.1080/87565641.2016.1161764URL |
54 | Ikeda Y., Okuzumi H., & Kokubun M . ( 2014). Inhibitory control in children with intellectual disabilities with and without autism spectrum disorders in animal size tests. International Journal of Developmental Disabilities, 60( 2), 80-88. doi: 10.1179/2047387713Y.0000000024URL |
55 | Johnson, C. P., & Myers, S. M . ( 2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120( 5), 1183-1215. doi: 10.1542/peds.2007-2361URL |
56 | Johnston K., Madden A. K., Bramham J., & Russell A. J . ( 2011). Response inhibition in adults with autism spectrum disorder compared to attention deficit/hyperactivity disorder. Journal of Autism & Developmental Disorders, 41( 7), 903-912. |
57 | Just M. A., Cherkassky V. L., Keller T. A., Kana R. K., & Minshew N. J . ( 2007). Functional and anatomical cortical under connectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17( 4), 951-961. doi: 10.1093/cercor/bhl006URL |
58 | Just M. A., Keller T. A., Malave V. L., Kana R. K., & Varma S . ( 2012). Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neuroscience & Biobehavioral Reviews, 36( 4), 1292-1313. |
59 | Kana R. K., Keller T. A., Minshew N. J., & Just M. A . ( 2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62( 3), 198-206. doi: 10.1016/j.biopsych.2006.08.004URL |
60 | Kaushik, G., & Zarbalis, K. S . ( 2016). Prenatal neurogenesis in autism spectrum disorders. Frontiers in Chemistry, 4, 12. |
61 | Kenet T., Orekhova E. V., Bharadwaj H., Shetty N. R., Israeli E., Lee A. K. C., .. Manoach D. S . ( 2012). Disconnectivity of the cortical ocular motor control network in autism spectrum disorders. NeuroImage, 61( 4), 1226-1234. doi: 10.1016/j.neuroimage.2012.03.010URL |
62 | Kimhi Y., Shoam-Kugelmas D., Ben-Artzi G. A., Ben-Moshe I., & Bauminger-Zviely N . ( 2014). Theory of mind and executive function in preschoolers with typical development versus intellectually able preschoolers with autism spectrum disorder. Journal of Autism & Developmental Disorders, 44( 9), 2341-2354. |
63 | Klusek J., Roberts J. E., & Losh M . ( 2015). Cardiac autonomic regulation in autism and fragile X syndrome: A review. Psychological Bulletin, 141( 1), 141-175. doi: 10.1037/a0038237URL |
64 | Kohls G., Peltzer J., Herpertz-Dahlmann B., & Konrad K . ( 2009). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12( 4), 614-625. doi: 10.1111/desc.2009.12.issue-4URL |
65 | Kouklari E. C., Thompson T., Monks C. P., & Tsermentseli S . ( 2017). Hot and cool executive function and its relation to theory of mind in children with and without autism spectrum disorder. Journal of Cognition & Development, 18( 4), 399-418. |
66 | Langen M., Leemans A., Johnston P., Ecker C., Daly E., Murphy C. M., .. Murphy, D. G. M . ( 2012). Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography. Cortex, 48( 2), 183-193. doi: 10.1016/j.cortex.2011.05.018URL |
67 | Larson M. J., South M., Clayson P. E., & Clawson A . ( 2012). Cognitive control and conflict adaptation in youth with high-functioning autism. Journal of Child Psychology and Psychiatry, 53( 4), 440-448. doi: 10.1111/j.1469-7610.2011.02498.xURL |
68 | Leung R. C., Vogan V. M., Powell T. L., Anagnostou E., & Taylor M. J . ( 2016). The role of executive functions in social impairment in autism spectrum disorder. Child Neuropsychology: A Journal on Normal & Abnormal Development in Childhood & Adolescence, 22( 3), 336-344. |
69 | Lowe C. J., Staines W. R., & Hall P. A . ( 2017). Effects of moderate exercise on cortical resilience: A transcranial magnetic stimulation study targeting the dorsolateral prefrontal cortex. Psychosomatic Medicine, 79( 2), 143-152. |
70 | Luna B., Doll S. K., Hegedus S. J., Minshew N. J., & Sweeney J. A . ( 2007). Maturation of executive function in autism. Biological Psychiatry, 61( 4), 474-481. doi: 10.1016/j.biopsych.2006.02.030URL |
71 | Lustig C., Hasher L., & Tonev S. T . ( 2006). Distraction as a determinant of processing speed. Psychonomic Bulletin & Review, 13( 4), 619-625. |
72 | Macintosh, K. E., & Dissanayake, C . ( 2004). Annotation: The similarities and differences between autistic disorder and Asperger’s disorder: A review of the empirical evidence. Journal of Child Psychology & Psychiatry, 45( 3), 421-434. |
73 | McAlister, A. R., & Peterson, C. C . ( 2013). Siblings, theory of mind, and executive functioning in children aged 3-6 years: New longitudinal evidence. Child Development, 84( 4), 1442-1458. doi: 10.1111/cdev.12043URL |
74 | Millner A. J., Jaroszewski A. C., Chamarthi H., & Pizzagalli D. A . ( 2012). Behavioral and electrophysiological correlates of training-induced cognitive control improvements. NeuroImage, 63( 2), 742-753. doi: 10.1016/j.neuroimage.2012.07.032URL |
75 | Miranda A., Berenguer C., Roselló B., Baixauli I., & Colomer C . ( 2017). Social cognition in children with high-functioning autism spectrum disorder and attention- deficit/hyperactivity disorder. Associations with executive functions. Frontiers in Psychology, 8, 1035. doi: 10.3389/fpsyg.2017.01035URL |
76 | Mosconi M. W., Kay M., D'Cruz A. M., Seidenfeld A., Guter S., Stanford L. D., & Sweeney J. A . ( 2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological Medicine, 39( 9), 1559-1566. doi: 10.1017/S0033291708004984URL |
77 | Mostert-Kerckhoffs M. A. L., Staal W. G., Houben R. H., & de Jonge, M. V . ( 2015). Stop and change: Inhibition and flexibility skills are related to repetitive behavior in children and young adults with autism spectrum disorders. Journal of Autism & Developmental Disorders, 45( 10), 3148-3158. |
78 | Mukaetova-Ladinska E. B., Arnold H., Jaros E., Perry R., & Perry E . ( 2004). Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathology and Applied Neurobiology, 30( 6), 615-623. doi: 10.1111/nan.2004.30.issue-6URL |
79 | Naaijen J., Lythgoe D. J., Amiri H., Buitelaar J. K., & Glennon J. C . ( 2015). Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: A review of magnetic resonance spectroscopy studies. Neuroscience & Biobehavioral Reviews, 52, 74-88. |
80 | Naaijen J., Bralten J., Poelmans G., Glennon J. C., Franke B., & Buitelaar J. K . ( 2017). Glutamatergic and gabaergic gene sets in attention-deficit/hyperactivity disorder: Association to overlapping traits in ADHD and autism. Translational Psychiatry, 7, e999. doi: 10.1038/tp.2016.273URL |
81 | Nieuwenhuis S., Yeung N., van den Wildenberg W., & Ridderinkhof K. R . ( 2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3( 1), 17-26. |
82 | Oberle E., Schonert-Reichl K. A., Lawlor M. S., & Thomson K. C . ( 2012). Mindfulness and inhibitory control in early adolescence. The Journal of Early Adolescence, 32( 4), 565-588. doi: 10.1177/0272431611403741URL |
83 | Ocklenburg S., Ness V., Güntürkün O., Suchan B., & Beste C . ( 2013). Response inhibition is modulated by functional cerebral asymmetries for facial expression perception. Frontiers in Psychology, 4, 879. |
84 | Oswald T. M . ( 2012). Relations among theory of mind and executive function abilities in typically developing adolescents and adolescents with Asperger's syndrome and high functioning autism (Unpublished doctorial dissertation). University of Oregon. |
85 | Padmanabhan A., Garver K., O'Hearn K., Nawarawong N., Liu R., Minshew N., .. Luna B . ( 2015). Developmental changes in brain function underlying inhibitory control in autism spectrum disorders. Autism Research, 8( 2), 123-135. doi: 10.1002/aur.1398URL |
86 | Pellicano, E . ( 2007). Links between theory of mind and executive function in young children with autism: Clues to developmental primacy. Developmental Psychology, 43( 4), 974-990. doi: 10.1037/0012-1649.43.4.974URL |
87 | Pellicano, E . ( 2010). Individual differences in executive function and central coherence predict developmental changes in theory of mind in autism. Developmental Psychology, 46( 2), 530-544. doi: 10.1037/a0018287URL |
88 | Pilorge M., Fassier C., Le Corronc H., Potey A., Bai J., De Gois S., .. Betancur C . ( 2016). Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Molecular Psychiatry, 21, 936-945. doi: 10.1038/mp.2015.139URL |
89 | Pooragha F., Kafi S. M., & Sotodeh S. O . ( 2013). Comparing response inhibition and flexibility for two components of executive functioning in children with autism spectrum disorder and normal children. Iranian Journal of Pediatrics, 23( 3), 309-314. |
90 | Prat C. S., Stocco A., Neuhaus E., & Kleinhans N. M . ( 2016). Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex. Neuropsychologia, 91, 268-281. doi: 10.1016/j.neuropsychologia.2016.08.007URL |
91 | Qiu T., Chang C., Li Y., Qian L., Xiao C. Y., Xiao T., .. Ke X. Y . ( 2016). Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2-5-year-old children with autism spectrum disorder. Developmental Cognitive Neuroscience, 19, 137-143. doi: 10.1016/j.dcn.2016.02.010URL |
92 | Riby D. M., Brown P. H., Jones N., & Hanley M . ( 2012). Brief report: Faces cause less distraction in autism. Journal of Autism & Developmental Disorders, 42( 4), 634-639. |
93 | Rosti R. O., Sadek A. A., Vaux K. K., & Gleeson J. G . ( 2014). The genetic landscape of autism spectrum disorders. Developmental Medicine & Child Neurology, 56( 1), 12-18. |
94 | Sabbagh M. A., Moses L. J., & Shiverick S . ( 2006). Executive functioning and preschoolers' understanding of false beliefs, false photographs, and false signs. Child Development, 77( 4), 1034-1049. doi: 10.1111/cdev.2006.77.issue-4URL |
95 | Sachse M., Schlitt S., Hainz D., Ciaramidaro A., Schirman S., Walter H., .. Freitag C. M . ( 2013). Executive and visuo-motor function in adolescents and adults with autism spectrum disorder. Journal of Autism & Developmental Disorders, 43( 5), 1222-1235. |
96 | Sanderson, C., & Allen, M. L . ( 2013). The specificity of inhibitory impairments in autism and their relation to ADHD-type symptoms. Journal of Autism & Developmental Disorders, 43( 5), 1065-1079. |
97 | Schevernels H., Bombeke K., van der Borght L., Hopf J. M., Krebs R. M., & Boehler C. N . ( 2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. NeuroImage, 121, 115-125. doi: 10.1016/j.neuroimage.2015.07.023URL |
98 | Schmitz N., Rubia K., Daly E., Smith A., Williams S., & Murphy, D. G. M . ( 2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59( 1), 7-16. doi: 10.1016/j.biopsych.2005.06.007URL |
99 | Shafritz K. M., Dichter G. S., Baranek G. T., & Belger A . ( 2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological Psychiatry, 63( 10), 974-980. doi: 10.1016/j.biopsych.2007.06.028URL |
100 | Shafritz K. M., Bregman J. D., Ikuta T., & Szeszko P. R . ( 2015). Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 60, 112-120. |
101 | Sheikhani A., Behnam H., Mohammadi M. R., Noroozian M., & Mohammadi M . ( 2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36( 2), 957-963. doi: 10.1007/s10916-010-9560-6URL |
102 | Sheridan M., Kharitonova M., Martin R. E., Chatterjee A., & Gabrieli, J. D. E . ( 2014). Neural substrates of the development of cognitive control in children ages 5-10 years. Journal of Cognitive Neuroscience, 26( 8), 1840-1850. doi: 10.1162/jocn_a_00597URL |
103 | Silveri M. M., Sneider J. T., Crowley D. J., Covell M. J., Acharya D., Rosso I. M., & Jensen J. E . ( 2013). Frontal lobe γ-aminobutyric acid levels during adolescence: Associations with impulsivity and response inhibition. Biological Psychiatry, 74( 4), 296-304. doi: 10.1016/j.biopsych.2013.01.033URL |
104 | Solomon M., Ozonoff S. J., Cummings N., & Carter C. S . ( 2008). Cognitive control in autism spectrum disorders. International Journal of Developmental Neuroscience, 26( 2), 239-247. doi: 10.1016/j.ijdevneu.2007.11.001URL |
105 | Solomon M., Ozonoff S. J., Ursu S., Ravizza S., Cummings N., Ly S., & Carter C. S . ( 2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47( 12), 2515-2526. doi: 10.1016/j.neuropsychologia.2009.04.019URL |
106 | Solomon M., Yoon J. H., Ragland J. D., Niendam T. A., Lesh T. A., Fairbrother W., & Carter C. S . ( 2014). The development of the neural substrates of cognitive control in adolescents with autism spectrum disorders. Biological Psychiatry, 76( 5), 412-421. doi: 10.1016/j.biopsych.2013.08.036URL |
107 | Sussman D., Leung R. C., Vogan V. M., Lee W., Trelle S., Lin S., .. Taylora M. J . ( 2015). The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD. NeuroImage: Clinical, 8, 170-179. doi: 10.1016/j.nicl.2015.04.008URL |
108 | Thakkar K. N., Polli F. E., Joseph R. M., Tuch D. S., Hadjikhani N., Barton J. J. S., & Manoach D. S . ( 2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain, 131( 9), 2464-2478. doi: 10.1093/brain/awn099URL |
109 | Titz, C., & Karbach, J . ( 2014). Working memory and executive functions: Effects of training on academic achievement. Psychological Research, 78( 6), 852-868. doi: 10.1007/s00426-013-0537-1URL |
110 | Tye C., Asherson P., Ashwood K. L., Azadi B., Bolton P., & McLoughlin G . ( 2014). Attention and inhibition in children with ASD, ADHD and co-morbid ASD + ADHD: An event-related potential study. Psychological Medicine, 44( 5), 1101-1116. doi: 10.1017/S0033291713001049URL |
111 | Uzefovsky F., Allison C., Smith P., & Baron-Cohen S . ( 2016). Brief report: The go/no-go task online: Inhibitory control deficits in autism in a large sample. Journal of Autism & Developmental Disorders, 46, 2774-2779. |
112 | van de Lagemaat, L. N., Nijhof B., Bosch D. G. M., Kohansal-Nodehi M., Keerthikumar S., & Heimel J. A . ( 2014). Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain. Frontiers in Neuroscience, 8, 394. |
113 | Vara A. S., Pang E. W., Doyle-Thomas K. A. R., Vidal J., Taylor M. J., & Anagnostou E . ( 2014). Is inhibitory control a 'no-go' in adolescents with autism spectrum disorder? Molecular Autism, 5, 6. doi: 10.1186/2040-2392-5-6URL |
114 | Velasquez F., Qin X. A., Reilly M. A., Neuhaus E., Estes A., Aylward E., & Kleinhans N. M . ( 2017). Neural correlates of emotional inhibitory control in autism spectrum disorders. Research in Developmental Disabilities, 64, 64-77. doi: 10.1016/j.ridd.2017.03.008URL |
115 | Worsham W., Gray W. E., Larson M. J., & South M . ( 2015). Conflict adaptation and congruency sequence effects to social-emotional stimuli in individuals with autism spectrum disorders. Autism, 19( 8), 897-905. doi: 10.1177/1362361314553280URL |
116 | Xiao T., Xiao Z., Ke X. Y., Hong S. S., Yang H. Y., Su Y. L., .. Liu Y. J . ( 2012). Response inhibition impairment in high functioning autism and attention deficit hyperactivity disorder: Evidence from near-infrared spectroscopy data. PLoS One, 7( 10), e46569. doi: 10.1371/journal.pone.0046569URL |
117 | Yang J., Zhou S. J., Yao S. Q., Su L. Y., & McWhinnie C . ( 2009). The relationship between theory of mind and executive function in a sample of children from mainland china. Child Psychiatry & Human Development, 40( 2), 169-182. |
118 | Yerys B. E., Kenworthy L., Jankowski K. F., Strang J., & Wallace G. L . ( 2013). Separate components of emotional go/no-go performance relate to autism versus attention symptoms in children with autism. Neuropsychology, 27( 5), 537-545. doi: 10.1037/a0033615URL |
119 | Yuen R. K. C., Merico D., Bookman M., Howe J. L., Thiruvahindrapuram B., Patel R. V., .. Scherer S. W . ( 2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience, 20, 602-611. |
120 | Zikopoulos, B., & Barbas, H . ( 2013). Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Frontiers in Human Neuroscience, 7, 609. |
相关文章 15
[1] | 霍超, 李祚山, 孟景. 自闭症谱系障碍个体的共情干预:扬长还是补短?[J]. 心理科学进展, 2021, 29(5): 849-863. |
[2] | 程羽慧, 袁祥勇, 蒋毅. 社会互动加工的认知特性及脑机制——第三人称的视角[J]. 心理科学进展, 2021, 29(3): 472-480. |
[3] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[4] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[5] | 王协顺, 苏彦捷. 从动作模仿到社会认知:自我-他人控制的作用[J]. 心理科学进展, 2019, 27(4): 636-645. |
[6] | 王劭睿, 陈红. 为何越减越肥?——限制性饮食者过度进食的心理机制及影响因素[J]. 心理科学进展, 2019, 27(2): 322-328. |
[7] | 魏华, 周仁来. 焦虑个体抑制控制缺陷的研究现状和争议:基于注意控制理论视角[J]. 心理科学进展, 2019, 27(11): 1853-1862. |
[8] | 刘春燕, 陈功香. 自闭症谱系障碍个体的焦虑:发生机制、评估与治疗[J]. 心理科学进展, 2019, 27(10): 1713-1725. |
[9] | 尹述飞, 李添, 朱心怡. 主观记忆减退老年人情节记忆的行为表现及其脑机制[J]. 心理科学进展, 2019, 27(1): 51-59. |
[10] | 刘迪迪, 王美萍, 陈翩, 张文新. COMT基因Val158Met多态性与抑郁的关系[J]. 心理科学进展, 2018, 26(8): 1429-1437. |
[11] | 李开云, 陈功香, 傅小兰. 自闭症谱系障碍者的视运动知觉[J]. 心理科学进展, 2018, 26(5): 831-845. |
[12] | 林弋琪, 王希, 彭凯平, 倪士光. 虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526. |
[13] | 孟珠, 闫国利. 阅读任务中无关言语效应的作用机制: 干扰基于内容还是过程?[J]. 心理科学进展, 2018, 26(2): 262-269. |
[14] | 周晶, 宣宾. 额叶区域的经颅直流电刺激对抑制控制的影响[J]. 心理科学进展, 2018, 26(11): 1976-1991. |
[15] | 郝艳斌, 王福兴, 谢和平, 安婧, 王玉鑫, 刘华山. 自闭症谱系障碍者的面孔加工特点——眼动研究的元分析[J]. 心理科学进展, 2018, 26(1): 26-41. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4406