1 中国科学院行为科学重点实验室, 北京 100101
2 中国科学院大学, 北京 100049
3 广州大学教育学院心理系脑与认知科学中心, 广州 510006
收稿日期:
2017-07-21出版日期:
2018-06-10发布日期:
2018-04-28通讯作者:
刘勋E-mail:liux@psych.ac.cn基金资助:
* 国家重点研发项目计划(2016YFC0800901-Z03);中德国际地区合作与交流项目(NSFC 61621136008 /DFG TRR-169)Attentional regulation mechanisms of cognitive control in conflict resolution
LI Zhenghan1,2, YANG Guochun1,2, NAN Weizhi3, LI Qi1,2, LIU Xun1,2()1 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Brain and Cognitive Neuroscience Research Center, School of Education, Guangzhou University, Guangzhou 510006, China
Received:
2017-07-21Online:
2018-06-10Published:
2018-04-28Contact:
LIU Xun E-mail:liux@psych.ac.cn摘要/Abstract
摘要: 认知控制在冲突解决过程中起到重要的调节作用。相关理论大多结合任务相关刺激的加工增强和任务无关刺激的加工抑制进行解释, 但近年来受到实证研究的挑战。综述了冲突解决中增强和抑制两种调节机制的争论和相应的实证证据, 同时指出认知控制的调节机制可能受到冲突情境和个体自身等因素的影响。未来的研究应更多关注认知控制调节机制的影响因素, 加强认知加工策略和认知训练的探究, 为认知功能受损群体的干预提供依据。
图/表 3
图1色-词加工的神经网络模型(改自: Herd et al., 2006) 注:g:绿色; r:红色; o:其他颜色; G:字词“绿”; R:字词“红”; O:其他字词; gr:对“绿”反应; rd:对“红”反应; ot:对其他内容反应; cn:颜色命名任务; wr:词汇阅读任务; c:颜色任务单元。
图1色-词加工的神经网络模型(改自: Herd et al., 2006) 注:g:绿色; r:红色; o:其他颜色; G:字词“绿”; R:字词“红”; O:其他字词; gr:对“绿”反应; rd:对“红”反应; ot:对其他内容反应; cn:颜色命名任务; wr:词汇阅读任务; c:颜色任务单元。
图2HT选择性注意模型(改自: Houghton & Tipper, 1996)
图2HT选择性注意模型(改自: Houghton & Tipper, 1996)
图3学习模型 (改自: Verguts & Notebaert, 2008)注:T1:第一个任务; T2:第二个任务; T1r:第一个任务中的任务相关刺激特征; T1i:第一个任务中的任务无关刺激特征; T2r:第二个任务中的任务相关刺激特征; T2i:第二个任务中的任务无关刺激特征; R1-R4:不同的应答单元; ACC:前扣带皮层
图3学习模型 (改自: Verguts & Notebaert, 2008)注:T1:第一个任务; T2:第二个任务; T1r:第一个任务中的任务相关刺激特征; T1i:第一个任务中的任务无关刺激特征; T2r:第二个任务中的任务相关刺激特征; T2i:第二个任务中的任务无关刺激特征; R1-R4:不同的应答单元; ACC:前扣带皮层
参考文献 65
[1] | 刘培朵, 杨文静, 田夏, 陈安涛 . ( 2012). 冲突适应效应研究述评. 心理科学进展, 20( 4), 532-541. doi: 10.3724/SP.J.1042.2012.00532URL |
[2] | 刘勋, 南威治, 王凯, 李琦 . ( 2013). 认知控制的模块化组织. 心理科学进展, 21( 12), 2091-2102. |
[3] | Abel S., Dressel K., Weiller C., & Huber W . ( 2012). Enhancement and suppression in a lexical interference fMRI-paradigm. Brain & Behavior, 2( 2), 109-127. doi: 10.1002/brb3.31URLpmid: 22574280 |
[4] | Baldauf, D., & Desimone, R. ( 2014). Neural mechanisms of object-based attention. Science, 344, 424-427. doi: 10.1126/science.1247003URLpmid: 24763592 |
[5] | Banich M. T., Milham M. P., Jacobson B. L., Webb A., Wszalek T., Cohen N. J., & Kramer A. F . ( 2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459-470. doi: 10.1016/S0079-6123(01)34030-XURL |
[6] | Biehl S. C., Ehlis A. C., Müller L. D., Niklaus A., Pauli P., & Herrmann M. J . ( 2013). The impact of task relevance and degree of distraction on stimulus processing. BMC Neuroscience, 14, 107. doi: 10.1186/1471-2202-14-107URLpmid: 24079268 |
[7] | Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113. doi: 10.1146/annurev-psych-010814-015044URLpmid: 25251491 |
[8] | Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D . ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108( 3), 624-652. doi: 10.1037//0033-295X.108.3.624URLpmid: 11488380 |
[9] | Burt, J. S . ( 2002). Why do non-color words interfere with color naming? Journal of Experimental Psychology: Human Perception and Performance, 28( 5), 1019-1038. doi: 10.1037/0096-1523.28.5.1019URLpmid: 12421053 |
[10] | Chao, H. F . ( 2011). Active inhibition of a distractor word: The distractor precue benefit in the Stroop color-naming task. Journal of Experimental Psychology: Human Perception and Performance, 37( 3), 799-812. doi: 10.1037/a0022191URLpmid: 21480743 |
[11] | Chechko N., Kellermann T., Schneider F., & Habel U . ( 2014). Conflict adaptation in emotional task underlies the amplification of target. Emotion, 14( 2), 321-330. doi: 10.1037/a0035208URLpmid: 24377682 |
[12] | Chun J. W., Park H. J., Kim D. J., Kim E., & Kim J. J . ( 2017). Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict. Brain Research, 1666, 48-57. doi: 10.1016/j.brainres.2017.04.018URL |
[13] | Clouter A., Wilson R., Allen S., Klein R. M., & Eskes G. A . ( 2015). The influence of verbal and spatial working memory load on the time course of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 41( 2), 342-355. doi: 10.1037/a0038715URLpmid: 25621577 |
[14] | Cohen J. D., Dunbar K., & McClelland J. L . ( 1990). On the control of automatic processes - a parallel distributed- processing account of the Stroop effect. Psychological Review, 97( 3), 332-361. doi: 10.1037//0033-295X.97.3.332URLpmid: 2200075 |
[15] | Cole M. W., Ito T., Bassett D. S., & Schultz D. H . ( 2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19( 12), 1718-1726. doi: 10.1038/nn.4406URLpmid: 27723746 |
[16] | Cole M. W., Repov? G., & Anticevic A . ( 2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20( 6), 652-664. doi: 10.1177/1073858414525995URL |
[17] | Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S . ( 2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16( 9), 1348-1355. doi: 10.1038/nn.3470URLpmid: 3758404 |
[18] | Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., & Petersen S. E . ( 1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11( 8), 2383-2402. doi: 10.1523/JNEUROSCI.11-08-02383.1991URL |
[19] | Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790. doi: 10.1038/nn1594URLpmid: 16286928 |
[20] | Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680. doi: 10.3389/fnhum.2014.00680URLpmid: 4151034 |
[21] | Fenske, M. J., & Eastwood, J. D . ( 2003). Modulation of focused attention by faces expressing emotion: Evidence from Flanker tasks. Emotion, 3( 4), 327-343. doi: 10.1037/1528-3542.3.4.327URL |
[22] | Fox E., Russo R., Bowles R., & Dutton K . ( 2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology- General, 130( 4), 681-700. doi: 10.1037/0096-3445.130.4.681URLpmid: 11757875 |
[23] | Frings C., Wentura D., & Wühr P . ( 2012). On the fate of distractor representations. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 570-575. doi: 10.1037/a0027781URLpmid: 22428679 |
[24] | Frings, C., & Wühr, P. (2014). Top-down deactivation of interference from irrelevant spatial or verbal stimulus features. Attention Perception & Psychophysics, 76( 8), 2360-2374. doi: 10.3758/s13414-014-0728-xURLpmid: 24980154 |
[25] | Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130. doi: 10.3389/fnhum.2012.00130URLpmid: 3349932 |
[26] | Gorfein, D. S., & MacLeod, C. M . ( 2007). Inhibition in cognition. Washington, DC: American Psychological Association. |
[27] | Gregoriou G. G., Gotts S. J., Zhou H. H., & Desimone R . ( 2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324, 1207-1210. doi: 10.1126/science.1171402URLpmid: 2849291650773022967381 |
[28] | Harris, K. D., & Mrsic-Flogel, T. D . ( 2013). Cortical connectivity and sensory coding. Nature, 503( 7474), 51-58. doi: 10.1038/nature12654URLpmid: 24201278 |
[29] | Herd S. A., Banich M. T., & O'Reilly R. C . ( 2006). Neural mechanisms of cognitive control: An integrative model of stroop task performance and fMRI data. Journal of Cognitive Neuroscience, 18( 1), 22-32. doi: 10.1162/089892906775250012URLpmid: 16417680 |
[30] | Houghton, G., & Tipper, S. P . ( 1996). Inhibitory mechanisms of neural and cognitive control: Applications to selective attention and sequential action. Brain and Cognition, 30( 1), 20-43. doi: 10.1006/brcg.1996.0003URLpmid: 8811979 |
[31] | Kalanthroff E., Avnit A., Henik A., Davelaar E. J., & Usher M . ( 2015). Stroop proactive control and task conflict are modulated by concurrent working memory load. Psychonomic Bulletin & Review, 22( 3), 869-875. doi: 10.3758/s13423-014-0735-xURLpmid: 25257710 |
[32] | Kim S. Y., Kim M. S., & Chun M. M . ( 2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences of the United States of America, 102( 45), 16524-16529. doi: 10.1073/pnas.0505454102URLpmid: 16258067 |
[33] | Koster E. H. W., Hoorelbeke K., Onraedt T., Owens M., & Derakshan N . ( 2017). Cognitive control interventions for depression: A systematic review of findings from training studies. Clinical Psychology Review, 53, 79-92. doi: 10.1016/j.cpr.2017.02.002URLpmid: 28273486 |
[34] | Li Q., Nan W. Z., Wang K., & Liu X . ( 2014). Independent processing of stimulus-stimulus and stimulus-response conflicts. PLoS One, 9( 2), e89249. doi: 10.1371/journal.pone.0089249URLpmid: 3928426 |
[35] | Luna B., Marek S., Larsen B., Tervo-Clemmens B., & Chahal R . ( 2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151-170. doi: 10.1146/annurev-neuro-071714-034054URLpmid: 26154978 |
[36] | Manza P., Hu S., Chao H. H., Zhang S., Leung H. C., & Li, C. S. R. (2016). A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action. Neuroimage, 134, 466-474. doi: 10.1016/j.neuroimage.2016.04.055URLpmid: 27126003 |
[37] | Martiny-Huenger T., Gollwitzer P. M., & Oettingen G . ( 2014). Distractor devaluation in a flanker task: Object-specific effects without distractor recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 40( 2), 613-625. doi: 10.1037/a0034130URLpmid: 24016067 |
[38] | McClure, S. M., & Bickel, W. K . ( 2014). A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Annals of the New York Academy of Sciences, 1327, 62-78. doi: 10.1111/nyas.12561URLpmid: 4285342 |
[39] | Miller G. A., Galanter E., & Pribram K. H . ( 1960). Plans and the structure of behavior. New York, NY, US: Henry Holt and Company. |
[40] | Minamoto T., Shipstead Z., Osaka N., & Engle R. W . ( 2015). Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics. Attention, Perception, & Psychophysics, 77( 5), 1659-1673. doi: 10.3758/s13414-015-0866-9URLpmid: 25813738 |
[41] | Mishra J., de Villers-Sidani E., Merzenich M., & Gazzaley A . ( 2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84( 5), 1091-1103. doi: 10.1016/j.neuron.2014.10.034URLpmid: 4264379 |
[42] | M?ller M., Mayr S., & Buchner A . ( 2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75( 1), 132-144. doi: 10.3758/s13414-012-0380-2URLpmid: 23077027 |
[43] | Motter J. N., Pimontel M. A., Rindskopf D., Devanand D. P., Doraiswamy P. M., & Sneed J. R . ( 2016). Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 189, 184-191. doi: 10.1016/j.jad.2015.09.022URLpmid: 26437233 |
[44] | Navalyal, G. U., & Gavas, R. D . ( 2014). A dynamic attention assessment and enhancement tool using computer graphics. Human-centric Computing and Information Sciences, 4( 1), 11. doi: 10.1186/s13673-014-0011-0URL |
[45] | Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807. doi: 10.1523/JNEUROSCI.2133-15.2016URLpmid: 26865606 |
[46] | Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106( 2), 1071-1080. doi: 10.1016/j.cognition.2007.04.011URL |
[47] | Olivers, C. N. L., & Humphreys, G. W . ( 2002). When visual marking meets the attentional blink: More evidence for top-down, limited-capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28( 1), 22-42. doi: 10.1037/0096-1523.28.1.22URL |
[48] | Owens M., Koster E. H. W., & Derakshan N . ( 2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50( 3), 297-307. doi: 10.1111/psyp.12010URLpmid: 23350956 |
[49] | Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23( 11), 3419-3432. doi: 10.1162/jocn_a_00011URLpmid: 21452938 |
[50] | Pardo J. V., Pardo P. J., Janer K. W., & Raichle M. E . ( 1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87( 1), 256-259. doi: 10.1073/pnas.87.1.256URLpmid: 2296583 |
[51] | Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the stroop task. Journal of Neuroscience, 28( 51), 13786-13792. doi: 10.1523/JNEUROSCI.1026-08.2008URLpmid: 19091969 |
[52] | Posner, M., & Snyder, C. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: Loyola symposium. Hillsdale, New Jersey: Erlbaum. |
[53] | Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17( 2), 75-79. doi: 10.1016/0166-2236(94)90078-7URL |
[54] | Purmann, S., & Pollmann, S. (2015). Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 9, 88. doi: 10.3389/fnhum.2015.00088URLpmid: 4347451 |
[55] | Reisenauer, R., & Dreisbach, G. (2014). The shielding function of task rules in the context of task switching. Quarterly Journal of Experimental Psychology, 67( 2), 358-376. doi: 10.1080/17470218.2013.808678URLpmid: 23805948 |
[56] | Schrobsdorff H., Ihrke M., Behrendt J., Hasselhorn M., & Herrmann J. M . ( 2012). Inhibition in the dynamics of selective attention: An integrative model for negative priming. Frontiers in Psychology, 3, 491. doi: 10.3389/fpsyg.2012.00491URLpmid: 3498964 |
[57] | Shenhav A., Botvinick M. M., & Cohen J. D . ( 2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79( 2), 217-240. doi: 10.1016/j.neuron.2013.07.007URLpmid: 23889930 |
[58] | Soutschek A., Stelzel C., Paschke L., Walter H., & Schubert T . ( 2015). Dissociable effects of motivation and expectancy on conflict processing: An fMRI Study. Journal of Cognitive Neuroscience, 27( 2), 409-423. doi: 10.1162/jocn_a_00712URLpmid: 25203271 |
[59] | Stout, D. (2010). The evolution of cognitive control. Topics in Cognitive Science, 2( 4), 614-630. doi: 10.1111/j.1756-8765.2009.01078.xURLpmid: 25164046 |
[60] | Stroop, J. R . ( 1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662. doi: 10.1037/0096-3445.121.1.15URL |
[61] | Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115( 2), 518-525. doi: 10.1037/0033-295X.115.2.518URLpmid: 18426302 |
[62] | Weissman D. H., Gopalakrishnan A., Hazlett C. J., & Woldorff M. G . ( 2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15( 2), 229-237. doi: 10.1093/cercor/bhh125URLpmid: 15238434 |
[63] | Wendt M., Luna-Rodriguez A., & Jacobsen T . ( 2012). Conflict-Induced perceptual filtering. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 675-686. doi: 10.1037/a0025902URL |
[64] | Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37, 35S-43S. doi: 10.1097/AUD.0000000000000310URLpmid: 27355768 |
[65] | Zhang L. W., Ding C., Li H., Zhang Q. L., & Chen A. T . ( 2013). The influence of attentional control on stimulus processing is category specific in Stroop tasks: Attentional control. Psychological Research, 77( 5), 599-610. doi: 10.1007/s00426-012-0457-5URLpmid: 23080057 |
相关文章 15
[1] | 何嘉梅, 金磊. 目标概念的辨析及其对决策的影响[J]. 心理科学进展, 2021, 29(8): 1410-1419. |
[2] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
[3] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[4] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
[5] | 孙国晓, 张力为. 竞赛压力、注意控制与运动表现关系的理论演进[J]. 心理科学进展, 2021, 29(6): 1122-1130. |
[6] | 关旭旭, 王红波. 抑制引起的遗忘及其神经机制[J]. 心理科学进展, 2021, 29(4): 665-676. |
[7] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
[8] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[9] | 霍鹏辉, 冯成志, 陈庭继. 注视者及观察者因素对注视知觉的影响[J]. 心理科学进展, 2021, 29(2): 238-251. |
[10] | 张帆, 陈艾睿, 董波, 王爱君, 张明. 视觉注意捕获的快速脱离假说与信号抑制假说[J]. 心理科学进展, 2021, 29(1): 45-55. |
[11] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
[12] | 雷铭, 李朋波. 不同注意形式调节听感觉门控的神经机制[J]. 心理科学进展, 2020, 28(8): 1232-1245. |
[13] | 范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186. |
[14] | 武丽慧. 自我建构对口碑两极分化产品偏好的影响及作用机制[J]. 心理科学进展, 2020, 28(4): 535-548. |
[15] | 黄子立, 丁玉珑, 曲折. 特征注意的全局性调制作用——增强还是抑制?[J]. 心理科学进展, 2020, 28(4): 566-578. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4334