删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Aharonov【-逻*辑*与-】ndash;Bohm effect for bound states on spin-0 massive charged particles in a G【-逻*辑*

本站小编 Free考研考试/2022-01-02

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂傚洤顦甸弻銊モ攽閸℃瑥顤€濡炪倕绻掓慨椋庢閹烘鐒垫い鎺嶈兌缁♀偓闂佺ǹ鏈〃鍡涘棘閳ь剟姊绘担铏瑰笡閽冭京鎲搁弶鍨殻闁糕斁鍋撳銈嗗坊閸嬫挻銇勯弴銊ュ箻婵″弶鍔欓獮姗€骞囨担鐟板厞闂佸搫顦悧鍕礉瀹€鍕嚑闁硅揪闄勯埛鎴︽煕濠靛棗顏╅柡鍡樼懇閺岋絽螖閳ь剛鈧矮鍗冲畷娲焵椤掍降浜滈柟杈剧稻绾墎绱掗幇顓熲拻闁逞屽墯椤旀牠宕伴弴鐘插灊婵炲棙鎸堕埀顑跨椤粓鍩€椤掑嫬绠栨繛鍡樻尰閸ゆ垿鏌涢妸锔锯槈濞存粓绠栭弻娑⑩€﹂幋婵囩亐闂佽 鍋撳ù鐘差儐閻撱儲绻涢幋鐏活亪顢旈埡浼卞綊鎮╁▎蹇斿櫧缁炬儳鍚嬮妵鍕即閻愭潙娅i梺璇查獜婵″洭鍩€椤掍緡鍟忛柛锝庡櫍瀹曟垶绻濋崶褏鐣洪梺鍐叉惈閸熸壆澹曢崗闂寸箚妞ゆ牜鍋為弫閬嶆倵濮橆兙鍋㈡慨濠傤煼瀹曟帒鈻庨幋锝囩崶闂備胶枪椤戝懎螞濠靛棛鏆﹂柟瀛樼妇濡插牓鏌曡箛濞惧亾閾忣偒鍚呭┑锛勫亼閸婃牠鎮уΔ鍐煓闁圭儤鍨熼弸宥夋煟濡偐甯涢柣鎾寸懅缁辨挻鎷呴棃娑氫患闂佸搫顑囬崰鏍蓟閿濆绠婚悹铏瑰劋閻忓牓姊洪崫鍕伇闁哥姵鐗曢悾鐤亹閹烘繃鏅╅梺绋跨箰閸氬顢欓崟顐熸斀闁绘劘灏欓幗鐘电磼椤旇偐校缂佹梻鍠栧畷鍗炩槈濡厧濮︽俊鐐€栫敮鎺楀窗濮橆兗缂氶柟閭﹀幘缁犻箖鏌涘▎蹇fШ濠⒀屽墴閺岋繝宕ㄩ弶璺ㄥ帿闂佽鍨卞Λ鍐╀繆閹间礁唯鐟滄粓宕ぐ鎺撯拻濞达絽鎲¢崯鐐寸箾鐠囇呯暤鐎规洘绮岄~婵嬵敇閻斿嘲浼庢繝鐢靛Т閿曘倝鎮ф繝鍥ㄥ亗婵炴垶锕╅悢鍡涙偣鏉炴媽顒熼柛搴$箲閵囧嫰寮撮悢铏圭厜闂佸搫鐭夌徊楣冨箚閺冨牆顫呴柣姗嗗亝閻忓棙绻濆▓鍨灈闁挎洏鍊濋垾锕€鐣¢幍顔芥闂佸湱鍎ら崹鐔煎几鎼淬劍鐓欓悗鐢登瑰暩閻庤娲橀悡鈥愁潖缂佹ḿ鐟归柍褜鍓熼崺鈧い鎺戝€告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢閬嶆煟鎼搭垳绉甸柛瀣鐓ら柟缁㈠枟閻撴瑧鈧娲栧ú銈夊几濞戞瑣浜滈柕蹇ョ磿閳藉鏌嶉挊澶樻Ц闁宠閰i獮鍥敊閻撳簶鏋忔繝鐢靛Х閺佹悂宕戝☉銏╂晪妞ゆ挶鍨归崒銊ф喐閺冨牆绠栨繛宸簻鎯熼梺鍐叉惈閸婂憡绂嶅Δ鍛拺闁告繂瀚崒銊╂煕閵婏附銇濋柟顕嗙節閹垽姊归幇顔剧暰婵$偑鍊栭悧妤冩崲閸岀偛瑙︾憸鐗堝笚閻撴洘绻涢崱妤勫濞存粓绠栧濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈骞冮悜钘壩ㄧ憸澶愬磻閹炬剚娼╅柣鎾冲閻濇繈姊虹化鏇熸澒闁稿鎸搁—鍐Χ閸℃鐟ㄩ梺鍝ュУ閼规儳鐜婚崸妤€绠涙い鎾跺Х椤旀洟姊洪崷顓犲笡閻㈩垳鍋熺划濠氭嚒閵堝倸浜鹃悷娆忓缁€鈧紓鍌氱Т閿曨亪鐛繝鍥ㄥ€烽柛婵嗗珋閵娾晜鐓忛柛顐g箖瀹告繈鏌i敐澶岀暫婵﹦绮幏鍛矙濞嗙偓顥戦梻浣呵归鍛村箠鎼达絽寮查梻浣告惈缁嬩線宕㈡禒瀣9鐎瑰嫭澹嬮弨浠嬫煟濡搫绾у璺哄閺岋綁骞樺畷鍥╊唶闂佸疇顫夐崹鍧楀箖濞嗘挻鍤戞い鎴e劵濡炬悂姊绘担鍛婂暈婵﹦鎳撳玻鍨枎閹惧鐣抽梻鍌欒兌鏋紒缁樺姍瀹曘儳鈧綆鍓涢惌鍡涙倵閿濆骸浜濋柛娆忕箰閳规垿鎮╅幓鎺撴闂侀潧娲︾换鍫ュ蓟閻旇櫣椹抽柛锔诲幘閻﹀牊绻濈喊妯峰亾瀹曞洤鐓熼悗瑙勬磸閸旀垿銆佸▎鎾寸叆妞ゆ牗鐭竟鏇熶繆閵堝繒鍒伴柛鐕佸灦閸╂盯骞嬮敂鐣屽幘婵犳鍠楅崝鏇㈠焵椤掍焦绀嬬€殿喗鎮傚畷鎺楁倷鐎电ǹ骞堥梺鐟板悑閻n亪宕硅ぐ鎺戠厺闁哄洢鍨洪悡鏇㈡煃鐟欏嫬鍔ゅù婊呭亾娣囧﹪鎮欓鍕ㄥ亾閺嶎偅鏆滃┑鐘插閻棗銆掑锝呬壕閻庤娲滈弫濠氥€佸Δ鍛妞ゆ帒鍊搁獮鍫熺節閻㈤潧浠滄俊顐n殘閹广垽骞囬弶鎸庤緢濠电偛妫欓崝鎴炵濠婂牊鐓涢柛銉︽构缁ㄧ晫绱掓径妯烘灍妞ゃ劊鍎甸幃娆撳蓟閵夈儱鍙婇梻浣告贡鏋柨鏇樺劚椤曘儵宕熼姘辩杸濡炪倖甯婇悞锕€袙閸℃稒鈷掗柛灞捐壘閳ь剟顥撳▎銏狀潩椤戣偐绱伴悷婊勬⒒閻︻剟姊洪柅鐐茶嫰婢ь噣鏌嶇憴鍕伌闁搞劑绠栭幖褰掝敃閵忥紕浜烽梺璇叉唉椤煤韫囨稑鍨傚ù鐘差儏閽冪喖鏌涢埄鍐炬闁告艾顑夐弻娑㈠灳瀹曞洨顔夐柣搴㈣壘閵堟悂寮婚敐澶嬪亜闁告縿鍎抽悡鍌涚節閳封偓閸曞灚鐣奸梺杞扮贰閸o綁鐛幒妤€绠诲Λ鐗堢箖闁裤倕鈹戦悙宸殶闁告鍥ㄥ仱闁靛ň鏅滈崑鍌炴煛閸ャ儱鐏柣鎾寸懇閺岀喖顢涢崱妤勫婵炲牆鐖煎娲偡閺夋寧姣愬┑鐐叉▕閸欏啫顕f繝姘嵆闁靛繒濮撮懓鍨攽鎺抽崐鎰板磻閹剧粯鐓涢柛鈩冡缚閹冲洭鏌$仦鐣屝ら柟椋庡█瀵濡烽妷銉ュ挤濠德板€楁慨鐑藉磻濞戙埄鏁勫鑸靛姇缁犳牠鏌嶉崫鍕殭闁哄鐗嗛…璺ㄦ崉妤﹀灝顏紓浣靛妸閸庨潧顫忔繝姘<婵﹩鍏橀崑鎾搭槹鎼达絿鐒兼繛鎾村焹閸嬫挻顨ラ悙宸█闁轰焦鎹囬幃鈺呭礃闊厾鏁鹃梻鍌欑劍鐎笛兠洪弽顓炵9鐟滅増甯掗悿鐐亜韫囨挾澧涢柣鎾跺枛楠炴牕菐椤掆偓閳ь兙鍊曞玻鍧楀箛閻楀牏鍘甸梺鍛婄缚閸庢垹娑甸崨顖欑綍濠电姷鏁搁崑鐐哄垂椤栫偛鍨傜憸鐗堝笚閸婂潡鏌涢…鎴濅簴濞存粍绮撻弻鐔兼倻濡櫣浠撮梺鍝勵儍閸婃牜鎹㈠☉銏犵闁绘挸楠搁~宥囩磽娴h櫣甯涢柣鈺婂灦閻涱噣骞樼拠鑼唺闂佸搫鍟崑鍡涘疮鐎n喗鐓熼幖娣€ゅḿ鎰箾閸欏缂氶柟骞垮灲瀹曞ジ濡疯缁侊箓鏌f惔顖滅У闁哥姵顨婂鎻掆攽鐎n偆鍘撻悷婊勭矒瀹曟粓鎮㈡總澶婃闂佸憡绋戦敃锕傛偡瑜版帗鐓冪憸婊堝礈閻斿鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞わ富鍙冮幃宄扳堪閸愵亞顔婇梺杞扮贰閸犳牠鍩ユ径鎰潊闁挎稑瀚獮鎰版⒒娴e憡鍟炲〒姘殜瀹曟澘螖閸涱厾锛欓梺瑙勫婢ф鎮″☉銏″€堕柣鎰邦杺閸ゆ瑥鈹戦鐓庘偓鍧楀蓟閻旂⒈鏁婇柛婵嗗閸嬫挸鈹戦崱娆愭闂佸湱鍎ら崹鐔肺i崼鐔稿弿婵°倐鍋撴俊顐f⒒濡叉劙鏁撻敓锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱濠电姴鍊归崑銉╂煛鐏炶濮傜€殿噮鍣e畷濂告偄閸涘⿴鍞堕梻鍌欒兌鏋い鎴濇楠炴劙宕滆閸ㄦ繃銇勯幘璺轰汗婵℃彃鐗婃穱濠囶敍濠垫劕娈┑鐐叉啚閸ャ劉鎷哄┑鐐跺蔼椤曆囩嵁濡ゅ懏鐓熼柣鏂垮级濞呭﹦鈧鍠栭…鐑藉箖閵忋倕宸濆┑鐘插鑲栨繝寰锋澘鈧呭緤娴犲鐤い鏍剱閺佷胶鈧箍鍎遍ˇ浼村煕閹寸姷纾奸悗锝庝簽娴犮垺銇勯幒瀣伈闁哄矉绱曟禒锔炬嫚閹绘帩娼庨梻浣虹《閺呮繈宕戦妶澶屽祦閻庯綆鍠楅弲婵嬫煃瑜滈崜娑欑珶閺囥垹绀傞柛蹇曞帶瀵灝鈹戦绛嬫當婵☆偅顨婇悰顕€寮介鐔哄幐闂佺硶鍓濋〃鍫熸櫠閿旇姤鍙忓┑鐘叉噺椤忕姷绱掗鐣屾噧闁宠閰i獮鍡氼槻濠㈢懓顑夊缁樻媴閸涘﹥鍠愭繝娈垮枤閺佽鐣峰┑鍠棃宕ㄩ鐙€鍞归梻渚€娼х换鎺撴叏椤撶倣锝夊醇閵夛妇鍘棅顐㈡处濞叉牕鏆╂俊鐐€栭幐鎼佸箹椤愶箑鐓橀柟杈鹃檮閸婄兘鏌涘▎蹇f▓婵☆偆鍋熺槐鎾存媴閾忕懓绗¢柣銏╁灡椤ㄥ牏鍒掔€n喖绠虫俊銈勭濞堟劙姊洪崘鍙夋儓闁哥喍鍗抽弫宥呪堪閸涱垳锛濋梺绋挎湰閻熲晛顬婇悜鑺ョ厱闁靛ǹ鍎崇粔娲煟濞戝崬娅嶆鐐叉喘閹囧醇閵忕姴绠為梻浣筋嚙閸戠晫绱為崱娑樼;闁告侗鍘鹃弳锕傛倶閻愰潧浜鹃柛娆忕箰閳规垿鎮╅崣澶婃濡炪倕绻掓繛鈧柡宀€鍠愰ˇ鐗堟償閳锯偓閺嬪懘鎮楀▓鍨灈妞ゎ參鏀辨穱濠囨倻缁涘鏅╅梺鑽ゅ枛椤o附绔熼弴鐐╂斀閹烘娊宕愰幘缁樺殑闁告挷绀佹慨顒勬煃瑜滈崜鐔奉潖濞差亝鐒婚柣鎰蔼鐎氭澘顭胯閸ㄨ京鎹㈠☉銏″亗閹艰揪绲块鎺撶節绾版ê澧查柟顔煎€垮顐﹀礃椤旇偐鍔﹀銈嗗坊閸嬫挻銇勯弴顏嗙М鐎规洜枪铻栧ù锝呮惈楠炴姊洪悷鏉挎倯闁伙綆浜畷婵嗩吋閸涱亝顫嶉悷婊勬瀵鎮㈤崗鐓庢疅闂侀潧锛忛崨顖氬笒缂傚倸鍊风粈渚€顢栭崨姝ゅ洭顢涢悜鍡樻櫍婵犻潧鍊绘灙妤犵偑鍨介弻鐔兼焽閿旇法鏁栭梺鐑╂櫅闁帮絽顫忕紒妯诲闁告稑锕ラ崕鎾剁磽娴e壊鍎庣紒鑸佃壘閻g兘骞嬮敃鈧粈瀣亜閹烘垵浜炴繛鏉戝濮婃椽骞愭惔銏㈩槬闂佺ǹ锕ょ紞濠囧箖閿熺姵鍋勯柛蹇氬亹閸樼敻姊虹拠鈥崇€婚柛娑卞枟閸犳牜绱撻崒娆掝唹闁稿鎹囬弻娑㈠箛閸忓摜鏁栫紒鐐礃閸嬫劗妲愰幘瀛樺閻犳劦鍨崇槐鏉库攽閻愭潙绲绘い鏇ㄥ弮閸┾偓妞ゆ帒鍠氬ḿ鎰箾閸欏澧柣锝囧厴椤㈡宕橀鍐焻闂傚倸鍊风粈渚€骞夐敍鍕床闁稿本澹曢崑鎾愁潩椤掆偓濡茶鐣濋敐鍛仴鐎殿喗鎸抽幃娆撳煛閸屾稒婢戦梻鍌欒兌缁垶鏁冮埡鍛;闁告侗鍠栭崹鏂棵归悡搴f憼闁稿﹤鐖奸弻锝夊箛椤栨氨鍘銈冨劚椤︿即濡甸崟顖f晝妞ゆ劧绱曢弫鏍磽娴d粙鍝洪柟绋款煼楠炲繘宕ㄧ€涙ɑ鍎梺鑽ゅ枑婢瑰棝顢曢懖鈺冪=闁稿本鐟︾粊鐗堛亜閺囧棗娲﹂崑瀣煙閹咃紞闁哄棴闄勭换娑橆啅椤旇崵鐩庨梺缁樺笒閻忔岸濡甸崟顖氱鐎广儱顦伴鏍ㄧ箾鐎涙ḿ鐭嬬紒顔芥崌瀵鎮㈤崗鐓庘偓缁樹繆椤栨繃顏犲ù鐘虫綑椤啴濡堕崨顖滅暰闂佸搫鎳忕换鍕i幇鏉跨婵°倓绀佹禍鐟邦渻閵堝棙鈷掗柛妯犲嫭鍙忛柡鍥ュ灪閳锋垿姊婚崼鐔衡姇闁瑰吋鍔欓幃妤€顫濋鐔哄嚒濡炪倖娲╃紞渚€銆佸璺虹劦妞ゆ帒瀚弰銉╂煃瑜滈崜姘跺Φ閸曨垰绠抽柟瀛樼箥娴犺偐绱掗悙顒€鍔ゆ繛纭风節瀵鈽夐姀鐘电杸濡炪倖鐗楀銊バ掗姀銈嗏拺闁告繂瀚敍鏃傜磼閻樿櫕宕岀€殿喖顭峰鎾偄妞嬪海鐛梻浣稿閸嬪懐鎹㈤崒娑欏弿濠㈣埖鍔栭埛鎴︽偠濞戞巻鍋撻崗鍛棜婵犵數鍋涢顓熸叏閹绢噮鏁勯柛鈩冪⊕閸嬪倿鏌i弬鍨倯闁绘挻鐟╁娲敇閵娧呮殸婵犫拃灞芥灓缂佽鲸甯¢幃顏勨枎韫囨搩浠存繛瀛樼矋缁捇寮婚弴鐔虹彾妞ゆ牗鑹鹃弳鏇熶繆閸欏濮嶆慨濠呮閹风娀鍨鹃搹顐や簽缂傚倷绶¢崰妤呮偡閳哄懎违濞达絿纭跺Σ鍫熶繆椤栨艾妲婚柣妤佸哺濮婃椽宕ㄦ繝鍌氼棃闂佸憡娲栭悘姘辩礊濡も偓閳规垿鎮╅崹顐f瘎婵犳鍠氶崗姗€濡撮崒娑氼浄閻庯綆浜為崝锕€顪冮妶鍡楀潑闁稿鎸鹃惀顏嗙磼閵忕姴绫嶉悗瑙勬礃濡炰粙寮幇鏉垮耿闁归偊浜為惄搴ㄦ⒒娓氣偓濞佳呮崲閸℃稑绀堟繝闈涚墢閻棝鎮楅敐搴℃灍闁绘挻绋戦湁闁挎繂姣ヨぐ鎺戠劦妞ゆ巻鍋撴繛纭风節閻涱噣宕橀鑲╊槶閻熸粌鑻埢浠嬵敂閸喓鍙冨┑鈽嗗灟鐠€锕€危閻戞ǜ浜滈柡鍌涘閸犳ɑ鎱ㄦ繝鍌ょ吋鐎规洘甯掗~婵嬵敄閽樺澹曢梺缁樺灱婵倝宕甸崟顖涚厾闁告縿鍎查弳鈺伱归悩鍐插摵婵﹦绮幏鍛村川婵犲啫鍓甸梻浣虹帛椤ㄥ棛鍒掗幘宕囨殾婵犲﹤鍟犲Σ鍫熸叏濮楀棗澧柣蹇擄工閳规垿鎮欓崣澶樻!闂佸湱枪閹芥粎鍒掔紒妯肩瘈婵﹩鍘兼禒顖炴⒑閹肩偛鍔村ù婊勭矒閹啫煤椤忓懐鍘介梺闈涚墕閹冲繘宕板Ο缁樺弿濠电姴鎳忛鐘绘煕閺嶃劎澧电€殿喗鎸抽幃娆徝圭€n偄鐝堕梻鍌氬€峰ù鍥х暦閻㈢ǹ闂柨鏂垮⒔娑撳秹鏌熼幆褏锛嶉柡鍡畵閺岀喐娼忛崜褏鏆犻梺鍛婂姀閸嬫捇姊绘笟鈧ḿ褑鍣归梺鍛婄矆缁€渚€寮查銏♀拻闁稿本鐟ㄩ崗宀€鐥鐐靛煟鐎规洘绮岄埞鎴炵節閸愨晛娅¢梻鍌欐祰椤曆呮崲閹邦喗宕查悗锝庡枛绾偓闂佽鍎煎Λ鍕嫅閻斿吋鐓ユ繝闈涙-濡插摜绱掗悩宸吋闁诡喗顨呴埥澶娾枎鐎n剛绐楁俊鐐€х拹鐔煎礉瀹ュ洦宕叉繛鎴欏灪閺呮煡鏌涘☉鍗炴灍闁诡喗鐟╁娲箰鎼淬垹顦╂繛瀛樼矤娴滎亝淇婄€涙ɑ濯寸紒顖涙礃椤秴鈹戦埥鍡楃仸闁衡偓闁秵鍊靛┑鐘崇閳锋垿鏌涢敂璇插箹闁告柨顑囩槐鎺旀嫚閹绘巻鍋撶憴鍕攳濠电姴娲ょ粻顕€鏌ら幁鎺戝姉闁归绮换娑欐綇閸撗冨煂闂佺娅曢悷鈺佺暦閻戠瓔鏁囨繛鎴灻兼竟鏇炩攽閻愭潙鐏﹂悽顖涱殔閳诲秵绻濋崟銊ヤ壕閻熸瑥瀚粈鈧紓鍌氱Т閿曘倝鎮鹃悜鑺ュ€荤紒娑橆儐閺咃綁姊虹紒妯荤;闁绘帪濡囩槐鐐参旈崨顔规嫽婵炶揪绲块悺鏂酷缚閹邦喒鍋撶憴鍕闁挎洏鍨介妴浣割潩閹颁焦鞋濠电姰鍨奸~澶娒洪悢椋庢殾婵°倕鎳庣粈鍌炴煟閹炬娊顎楀ù鐓庡缁绘繄鍠婂Ο娲绘綉闂佹悶鍔嬮崡鎶界嵁閺嶎収鏁冮柨鏇楀亾缂佺姵鐗犻弻鐔衡偓娑櫳戦崕鏇㈡煛閸愩劎澧曠紒顐㈢Ч閺屾盯顢曢妶鍛瘣闂佸綊顥撶划顖滄崲濞戙垹绠婚柡澶嬪灩閸斾即姊虹粙娆惧剱闁圭懓娲璇差吋閸偅顎囬梻浣告啞閹稿鎯勯姘辨殾闁瑰瓨绺惧Σ鍫ユ煏韫囧ň鍋撻搹顐悈濠碉紕鍋戦崐鏍偋濡ゅ啰鐭欓柟鐑樺灍閺嬪秹鏌eΟ鑲╁笡闁稿﹤鐏氱换娑㈠箣閻愬灚鍠楃紓鍌氬€瑰銊ф閹烘鍋愰柛鎰絻婵垽姊婚崶褜妯€闁哄被鍔岄埞鎴﹀幢濡儤顏犻梻浣告惈濡繃绂嶉崼鏇炶摕婵炴垶锕╁ḿ鈺傘亜閹烘柡鎷″ù婊庝邯瀹曟椽濡烽敃鈧欢鐐测攽閻愵亜鐏柛鐘崇墵瀵濡歌閸嬫捇鏁愰崨顖欑驳缂傚倸绉撮惌鍌氼潖婵犳艾纾兼繛鍡樺灩閻涖垹鈹戦悙鏉垮皟闁告侗鍠栨惔濠囨⒑缁洖澧茬紒瀣灴閹偤宕归鐘辩盎闂佺懓鎼Λ妤佺妤e啯鈷戦柛娑橆焵閹达附鍋嬮柣妯垮皺閺嗭附绻涢崱妯诲鞍闁搞倕绉归弻鏇熺珶椤栨碍鍣芥俊鎻掓喘濮婄粯鎷呴崷顓熻弴闂佹悶鍔忓Λ鍕幓閼愁垼妲婚梺鐑╂閸欏啫顫忕紒妯诲闁荤喖鍋婇崵瀣攽閻愭潙绲荤紒缁樏悾鐑藉箛椤戣姤鏂€闁诲函缍嗘禍鐐烘偩濞差亝鍋℃繝濠傚暞閹癸綁鏌熼獮鍨仼闁宠鍨归埀顒婄秵娴滅偤宕愰悙鐑樺仭婵犲﹤鍟扮粻鑽も偓娈垮枟濡叉帡藝閸欏浜滄い蹇撳閺嗭絽鈹戦垾宕囧煟鐎规洖宕灃闁告劦浜濋崳顖炴⒒娴g瓔鍤欓悗娑掓櫊瀹曟瑨銇愰幒鎴犵厬闂佸憡鍔﹂崰鏍不閺嶎厽鐓ラ柣鏂挎惈瀛濋柛鐑嗗灦濮婃椽宕橀崣澶嬪創闂佺ǹ锕ら…宄扮暦閵忥紕顩烽悗锝庡亐閹锋椽姊洪崨濠勭畵閻庢凹鍘奸蹇撯攽鐎n偆鍘遍柣搴秵閸嬪棗煤閹绢喗鐓曢柍瑙勫劤娴滅偓淇婇悙顏勨偓鏍ь啅婵犳艾纾婚柟鎯ь嚟缁♀偓闂侀€炲苯澧撮柡灞芥椤撳ジ宕ㄩ姘曞┑锛勫亼閸婃牜鏁繝鍥ㄥ殑闁割偅娲栭悿顕€鏌$仦璇插姕闁绘挻鐟╅弻娑㈠箣濞嗗繆鍋撻弽顐熷亾濮樼偓瀚�
Faizuddin Ahmed,Ajmal College of Arts and Science, Dhubri-783324, Assam, India

Received:2019-12-20Revised:2020-03-19Accepted:2020-03-20Online:2020-06-04


Abstract
In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particles in a Gödel-type space–time with electromagnetic interactions. We derive the radial wave equation of the Klein–Gordon equation with an internal magnetic flux field and Coulomb-type potential in the Som–Raychaudhuri space–time with cosmic string. We solve this equation and analyze the analog effect in relation to the Aharonov–Bohm effect for bound states.
Keywords: Göodel-type metrics;relativistic wave equations: bound states;electromagnetic potential;energy spectrum;wave-functions


PDF (319KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Faizuddin Ahmed. Aharonov–Bohm effect for bound states on spin-0 massive charged particles in a Gödel-type space–time with Coulomb potential. Communications in Theoretical Physics, 2020, 72(7): 075102- doi:10.1088/1572-9494/ab8a15

1. Introduction

Currently, the relativistic quantum dynamics of spinless particles in the presence of external fields is of great interest to researchers. The physical properties of these systems are accessed by the solution of the Klein–Gordon field equation with electromagnetic interactions [1, 2]. The electromagnetic interactions are introduced into the Klein–Gordon equation through the so called minimal substitution, ${p}_{\mu }\to {p}_{\mu }-e\,{A}_{\mu }$, where e is the charge and Aμ is the four-vector potential of the electromagnetic field.

In recent years, there has been growing interest in finding the solution of relativistic wave equations of spin-zero particles, with or without potential, of various kinds, and using a variety of methods. In particular, several researchers have investigated the physical properties of a series of backgrounds with Gödel-type geometries. The relativistic quantum dynamics of spin-zero scalar particles in the Som–Raychaudhuri geometries was investigated in [3, 4] and observed the similarity of the energy eigenvalue with the Landau levels [5] in flat spaces (see also, [6]). The relativistic quantum dynamics of a scalar particle in the Gödel-type geometries of flat, spherical, and hyperbolic spaces was investigated in [7]. The Klein–Gordon oscillator under the influence of topological defects in the presence of external fields in the Som–Raychaudhuri space–time was studied in [8]. The relativistic quantum dynamics of a scalar particle in a Gödel-type metric with cosmic string was investigated in [9] and compared its results with landau levels in flat spaces. A quantum particle described by the Klein–Gordon oscillator interacting with a cosmic dislocation in Som–Raychaudhuri space–time, and in the presence of a ahomogeneous magnetic field using the Kaluza–Klein theory was investigated in [10]. Dirac fermions in a Gödel-type background space–times with torsion were investigated in [11]. Weyl fermions in a family of Gödel-type geometries as per Einstein’s theory of general relativity was studied in [12]. The authors solved the Weyl equation and found the energy eigenvalue and eigen-spinors for all three cases of Gödel-type geometries where the topological defecta is passing through string. In [13], a photon equation (mass-less Duffin–Kemmer–Petiau equation) was written explicitly for the general type of stationary Gödel space–time, and was solved exactly both for Gödel-type and Gödel space–times. The relativistic quantum dynamics of a scalar particle in a topologically trivial flat Gödel-type space–time was studied in [14]. Linear confinement of a scalar particle in the Som–Raychaudhuri space–time with a cosmic string in [15] (see also, [16]) and with a scalar and vector potentials of Coulomb-type in a topologically trivial flat Gödel-type space–time, were investigated in [17]. The Dirac equation in a topologically trivial flat Gödel-type space–time was investigated in [18]. Spin-0 system of the DKP equation and the DKP oscillator in a topologically trivial flat Gödel-type space–time was investigated in [19] and [20], respectively. The generalized Klein–Gordon oscillator subject to a scalar Coulomb potential in the backgrounds of (1+2)-dimensional Gürses space–time was investigated in [21]. The behavior of scalar particles with Yukawa-like confining potential in the Som–Raychaudhuri space–time in the presence of topological defects was investigated in [22]. The ground state of a bosonic massive charged particle in the presence of external fields in the Som–Raychaudhuri space–time was investigated in [23]. Recently, we pointed out in [24] that the derived radial wave equation of the Klein–Gordon equation in the Som–Raychaudhuri space–time in the presence of external fields in [23] was incorrect. The relativistic quantum dynamics of spin-0 massive charged particles in the presence of external fields in a four-dimensional curved space–time was investigated in [25]. The Klein–Gordon equation with vector and scalar potentials of a Coulomb-type under the influence of non-inertial effects in the cosmic string space–time was studied in [26]. The confinement of scalar particles subject to Coulomb-type potential has been investigated by many authors (e.g., [2730]). It is also worth mentioning studies that have dealt with Coulomb-type potential in the propagation of gravitational waves [31], quark models [32] and in relativistic quantum mechanics [3336].

In this paper, we investigate the analog effect on the Aharonov–Bohm effect for bound states in spin-0 massive charged particles in a Gödel-type space–time in the presence of external fields. We extend this analysis, including a Coulomb potential. We derive and solve the radial wave equation of the Klein–Gordon equation in the system under consideration, and obtain relativistic energy eigenvalue and eigenfunctions. The energy eigenvalue obtained here reduces to the results in [3, 9] mentioned in other research.

2. Bosonic charged particles: the Klein–Gordon equation

The relativistic quantum dynamics of a spin-zero massive charged particle of mass M is described by the following KG equation [36]:$ \begin{eqnarray}\left[\displaystyle \frac{1}{\sqrt{-g}}\,{{\mathsf{D}}}_{\mu }(\sqrt{-g}\,{g}^{\mu \nu }\,{{\mathsf{D}}}_{\nu })-\xi \,R\right]\,{\rm{\Psi }}={M}^{2}\,{\rm{\Psi }},\end{eqnarray}$where ${{\mathsf{D}}}_{\mu }\equiv {{\rm{\partial }}}_{\mu }-{\mathsf{i}}\,e\,{A}_{\mu }$ is the minimal coupling, ${\partial }_{\mu }=\tfrac{\partial }{\partial \,{x}^{\mu }},e$ is the electric charge, Aμ is the electromagnetic four-vector potential, ξ is the non-minimal coupling constant with background curvature, and R is the scalar curvature.

We have selected the four-vector electromagnetic potential ${A}_{\mu }=(-{A}_{0},\vec{A})$ with$ \begin{eqnarray}{A}_{0}=V,\quad \vec{A}=(0,{A}_{\phi },0),\end{eqnarray}$where the temporal component is represented by a scalar potential V.

Consider the Som–Raychaudhuri space–time with the cosmic string given by [8, 9]:$ \begin{eqnarray}{\rm{d}}{s}^{{\mathsf{2}}}=-{\left({\rm{d}}t+\alpha {\rm{\Omega }}{r}^{{\mathsf{2}}}{\rm{d}}\phi \right)}^{{\mathsf{2}}}+{\alpha }^{{\mathsf{2}}}\,{r}^{{\mathsf{2}}}\,{\rm{d}}{\phi }^{{\mathsf{2}}}+{\rm{d}}{r}^{{\mathsf{2}}}+{\rm{d}}{z}^{{\mathsf{2}}},\end{eqnarray}$where α and Ω respectively characterize the cosmic string and vorticity parameter of space–time. The cylindrical coordinates are in the ranges $-\infty \lt (t,z)\lt \infty ,0\leqslant r\lt \infty $, and the coordinate φ is periodic. Note that the above metric is of $(-,\,+,\,+,\,+)$ or +2 signature, and is Lorentzian, with ${\mathsf{\det }}\,g=-{\alpha }^{2}\,{r}^{2}$. The scalar curvature of the above metric is R=2 Ω2.

For geometry (3), the KG equation (1) becomes$ \begin{eqnarray}\begin{array}{l}\left[-{\left(\displaystyle \frac{\partial }{\partial t}+{\mathsf{i}}e{A}_{0}\right)}^{2}+\left\{\displaystyle \frac{1}{\alpha \,r}\left(\displaystyle \frac{\partial }{\partial \phi }-{\mathsf{i}}\,e\,{A}_{\phi }\right)\right.\right.\\ \quad {\left.-{\rm{\Omega }}r\left(\displaystyle \frac{\partial }{\partial t}+{\mathsf{i}}e{A}_{0}\right)\right\}}^{2}+\displaystyle \frac{1}{r}\,\displaystyle \frac{\partial }{\partial r}\left(r\,\displaystyle \frac{\partial }{\partial r}\right)\\ \quad \left.+\,{\partial }_{z}^{2}-({M}^{2}+2\,\xi \,{{\rm{\Omega }}}^{2})\right]\,{\rm{\Psi }}=0.\end{array}\end{eqnarray}$

The above equation is independent of time, and symmetrical by translations along the z-axis as well by rotation. It is reasonable to write the solution to equation (4) as$ \begin{eqnarray}{\rm{\Psi }}(t,r,\phi ,z)={{\rm{e}}}^{{\mathsf{i}}(-Et+l\phi +kz)}\,\psi (r),\end{eqnarray}$where E is the total energy, l=0,±1,±2, …, are the eigenvalues of the z-component of the angular momentum operator, and k represents the eigenvalues of the z-component of the linear momentum operator.

Substituting solution (5) into equation (4), we obtain the following equation for the radial wave-function ψ (r):$ \begin{eqnarray}\begin{array}{c}\begin{array}{l}{\psi }^{{\prime\prime} }(r)+\displaystyle \frac{1}{r}\,{\psi }^{{\prime} }(r)+\left[{\left(E-{eV}\right)}^{2}-{M}^{2}-{k}^{2}\right.\\ \,\,-\,2\,\xi \,{{\rm{\Omega }}}^{2}-\displaystyle \frac{{\left(l-e{A}_{\phi }\right)}^{2}}{{\alpha }^{2}\,{r}^{2}}\\ \,\,-\,{{\rm{\Omega }}}^{2}\,{r}^{2}{\left(E-{eV}\right)}^{2}\\ \,\,\left.-\displaystyle \frac{2\,{\rm{\Omega }}(E-e\,V)}{\alpha }(l-e\,{A}_{\phi })\right]\,\psi (r)=0.\end{array}\end{array}\end{eqnarray}$

We discuss two cases of the above equation as follows:

Case 1: considering the scalar potential V=0 in the above relativistic system.

Let us assume that the topological defects (cosmic string) have an internal magnetic flux field (with magnetic flux ΦB) [37]. Thereby, we obtain the angular component of the electromagnetic four-vector potential given by [30, 3840]$ \begin{eqnarray}e\,{A}_{\phi }={\rm{\Phi }},\quad {\rm{\Phi }}=\displaystyle \frac{{{\rm{\Phi }}}_{B}}{(2\,\pi /e)},\end{eqnarray}$where ΦB is the magnetic quantum flux.

Substituting the above electromagnetic potential equation (7) into equation (6), we obtain the following differential equation:$ \begin{eqnarray}\psi ^{\prime\prime} (r)+\displaystyle \frac{1}{r}\,\psi ^{\prime} (r)+\left[\lambda -{{\rm{\Omega }}}^{2}\,{E}^{2}\,{r}^{2}-\displaystyle \frac{{l}_{0}^{2}}{{r}^{2}}\right]\,\psi (r)=0,\end{eqnarray}$where$ \begin{eqnarray}\lambda ={E}^{2}-{M}^{2}-{k}^{2}-2\,\xi \,{{\rm{\Omega }}}^{2}-2\,{\rm{\Omega }}\,E\,{l}_{0},\quad {l}_{0}=\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }.\end{eqnarray}$Transforming $x={\rm{\Omega }}E{r}^{2}$ into the above equation (8), we obtain the following differential equation [41]:$ \begin{eqnarray}\psi ^{\prime\prime} (x)+\displaystyle \frac{1}{x}\,\psi ^{\prime} (x)+\displaystyle \frac{1}{{x}^{2}}(-{\xi }_{1}\,{x}^{2}+{\xi }_{2}\,x-{\xi }_{3})\psi (x)=0,\end{eqnarray}$where$ \begin{eqnarray}{\xi }_{1}=\displaystyle \frac{1}{4},\quad {\xi }_{2}=\displaystyle \frac{\lambda }{4\,{\rm{\Omega }}\,E},\quad {\xi }_{3}=\displaystyle \frac{{l}_{0}^{2}}{4}.\end{eqnarray}$The second degree energy eigenvalues equation is given by$ \begin{eqnarray}\begin{array}{l}{E}_{n,l}^{2}-2\,{\rm{\Omega }}\,{E}_{n,l}(2\,n+1+| {l}_{0}| +{l}_{0})\\ \quad -\,{M}^{2}-{k}^{2}-2\,\xi \,{{\rm{\Omega }}}^{2}=0.\end{array}\end{eqnarray}$The energy eigenvalues associated with nth radial modes is$ \begin{eqnarray}\begin{array}{l}{E}_{n,l}={\rm{\Omega }}\left(2\,n+1+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\displaystyle \frac{| l-{\rm{\Phi }}| }{\alpha }\right)\\ \pm \,\sqrt{{{\rm{\Omega }}}^{2}{\left(2n+1+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\displaystyle \frac{| l-{\rm{\Phi }}| }{\alpha }\right)}^{2}+{M}^{2}+{k}^{2}+2\,\xi \,{{\rm{\Omega }}}^{2}},\end{array}\end{eqnarray}$where n=0, 1, 2, 3, ..., .

Equation (13) is the relativistic energy eigenvalue of a massive charged particle in the presence of an internal magnetic flux field with background curvature in a Gödel-type space–time. The energy eigenvalues equation (13) depends on physical parameters such as the cosmic string α, the Aharonov–Bohm magnetic flux ΦB, and the non-minimal coupling constant ξ. The relativistic energy eigenvalue equation (13) depends on the geometric quantum phase [37]. This dependence of the relativistic energy eigenvalue on the geometric quantum phase gives rise to an analogous effect on the Aharonov–Bohm effect for bound states [37, 4244]. Thus, for ${{\rm{\Phi }}}_{0}=\pm \tfrac{2\,\pi \,\alpha }{e}\,\tau $, we find that ${E}_{n,\bar{l}}({{\rm{\Phi }}}_{B}+{{\rm{\Phi }}}_{0})\,={E}_{n,\bar{l}\mp \tau }({{\rm{\Phi }}}_{B})$ where, $\bar{l}=\tfrac{l}{\alpha }$ and τ=1, 2, 3, ..., .

We can see in comparison to the results without electromagnetic interactions as obtained in [3, 9], that the energy eigenvalues equation (13) of a massive charged particle are modified, even though there is no direct interaction of the particle with the external magnetic fields. For ${{\rm{\Phi }}}_{B}\to 0$, and without non-minimal coupling $\xi \to 0$, the energy eigenvalue equation (13) reduces to the result obtained in [9]. Again, for ${{\rm{\Phi }}}_{B}\to 0,\xi \to 0$, and $\alpha \to 1$, the energy eigenvalues equation (13) reduces to the result obtained in [3].

The normalized eigenfunction is given by$ \begin{eqnarray}{\psi }_{n,l}(x)=| N{| }_{n}\,{x}^{\tfrac{| l-{\rm{\Phi }}| }{2\alpha }}\,{{\rm{e}}}^{-\tfrac{x}{2}}\,{{\mathsf{L}}}_{n}^{(\tfrac{| l-{\rm{\Phi }}| }{\alpha })}(x),\end{eqnarray}$where $| N{| }_{n}={\left(\displaystyle \frac{n!}{\left(n+\displaystyle \frac{| l-{\rm{\Phi }}| }{\alpha }\right)!}\right)}^{\displaystyle \frac{1}{2}}$
is the normalization constant and ${{\mathsf{L}}}_{n}^{(\kappa )}(x)$ gives the generalized Laguerre polynomials, which are orthogonal over $[0,\infty )$ with respect to the measure with weighting function ${x}^{\kappa }\,{{\rm{e}}}^{-x}$ as$ \begin{eqnarray}{\int }_{0}^{\infty }{x}^{\kappa }\,{{\rm{e}}}^{-x}\,{{\mathsf{L}}}_{n}^{(\kappa )}\,{{\mathsf{L}}}_{m}^{(\kappa )}\,{\rm{d}}x=\displaystyle \frac{(n+\kappa )!}{n!}\,{\delta }_{nm}.\end{eqnarray}$

Case 2: considering the scalar potential to be Coulomb-type $V=\tfrac{{\xi }_{c}}{r}$ where, ξc>0.

Substituting the above potential with (7) into equation (6), we obtain the following radial wave equation for ψ (r):$ \begin{eqnarray}\begin{array}{l}\psi ^{\prime\prime} (r)+\displaystyle \frac{1}{r}\,\psi ^{\prime} (r)\\ \quad +\,\left[{\lambda }_{0}-{\omega }^{2}\,{r}^{2}-\displaystyle \frac{{j}^{2}}{{r}^{2}}-\displaystyle \frac{a}{r}+b\,r\right]\,\psi (r)=0,\end{array}\end{eqnarray}$where$ \begin{eqnarray}\begin{array}{rcl}{\lambda }_{0} & = & {E}^{2}-{M}^{2}-{k}^{2}-{{\rm{\Omega }}}^{2}\,{e}^{2}\,{\xi }_{c}^{2}-2\,{\rm{\Omega }}\,E\,{l}_{0}-2\,\xi \,{{\rm{\Omega }}}^{2},\\ \omega & = & {\rm{\Omega }}\,E,\\ j & = & \sqrt{{l}_{0}^{2}-{e}^{2}\,{\xi }_{c}^{2}},\\ a & = & 2\,e\,{\xi }_{c}(E-{\rm{\Omega }}\,{l}_{0}),\\ b & = & 2\,{{\rm{\Omega }}}^{2}\,E\,e\,{\xi }_{c}.\end{array}\end{eqnarray}$Transforming $x=\sqrt{\omega }\,r$ into the above equation (16), we obtain the following wave equation:$ \begin{eqnarray}\psi ^{\prime\prime} (x)+\displaystyle \frac{1}{x}\,\psi ^{\prime} (x)+\left[\zeta -{x}^{2}-\displaystyle \frac{{j}^{2}}{{x}^{2}}-\displaystyle \frac{\eta }{x}+\theta \,x\right]\,\psi (x)=0,\end{eqnarray}$where$ \begin{eqnarray}\zeta =\displaystyle \frac{{\lambda }_{0}}{\omega },\quad \eta =\displaystyle \frac{a}{\sqrt{\omega }},\quad \theta =\displaystyle \frac{b}{{\omega }^{\tfrac{3}{2}}}.\end{eqnarray}$

Next, we use the appropriate boundary conditions to investigate the bound states solution in this problem. It is a requirement that the wave-functions must be regular both at $x\to 0$ and $x\to \infty $. We then proceed with an analysis of the asymptotic behavior of the radial eigenfunction at origin and in the infinite. These conditions are necessary, since the wave-functions must be well-behaved within these limits, thereby enabling us to obtain the bound states of the energy for the system. Let us impose the requirement that $\psi (x)\to 0$ when $x\to 0$ and $x\to \infty $. Suppose the possible solution to the equation (18) is$ \begin{eqnarray}\psi (x)={x}^{A}\,{{\rm{e}}}^{-(Bx+D{x}^{2})}\,H(x),\end{eqnarray}$where H(x) is an unknown function. Substituting solution (20) into equation (18), we obtain$ \begin{eqnarray}\begin{array}{l}H^{\prime\prime} (x)+\left(\displaystyle \frac{1+2\,A}{x}-2\,B-4\,D\,x\right)H^{\prime} (x)\\ \quad +\,\left[\displaystyle \frac{{A}^{2}-{j}^{2}}{{x}^{2}}-\displaystyle \frac{\eta +(1+2\,A)B}{x}\right.\\ \quad +(\zeta +{B}^{2}-4\,D(1+A))+(4\,B\,D+\theta )x\\ \quad +\left.\,(4\,{D}^{2}-1){x}^{2}\right]\,H(x)=0.\end{array}\end{eqnarray}$Equating the coefficients of x−2, x1, x2 to zero in the above equation gives$ \begin{eqnarray}\begin{array}{rcl}{x}^{-2} & : & \quad {A}^{2}-{j}^{2}=0\Rightarrow A=j,\\ {x}^{1} & : & \quad 4\,B\,D+\theta =0\Rightarrow B=-\displaystyle \frac{\theta }{2},\\ {x}^{2} & : & \quad 4\,{D}^{2}-1=0\Rightarrow D=\displaystyle \frac{1}{2}.\end{array}\end{eqnarray}$With these, the above equation (21) can now be expressed as$ \begin{eqnarray}H^{\prime\prime} (x)+\left[\displaystyle \frac{\gamma }{x}+\theta -2\,x\right]\,H^{\prime} (x)+\left[-\displaystyle \frac{\chi }{x}+{\rm{\Theta }}\right]\,H(x)=0,\end{eqnarray}$where$ \begin{eqnarray}\begin{array}{rcl} & & \gamma =1+2\,A=1+2\,j,\\ & & {\rm{\Theta }}=\zeta +{B}^{2}-2(1+A)=\zeta +\displaystyle \frac{{\theta }^{2}}{4}-2(1+j),\\ & & \chi =\eta +(1+2\,A)B=\eta -\displaystyle \frac{\theta }{2}(1+2\,j).\end{array}\end{eqnarray}$Equation (23) is the biconfluent Heun’s differential equation [17, 36, 45, 46], where H(x) is the Heun polynomial function.

The above equation (23) can be solved by the Frobenius method, writing the solution as a power series expansion around the origin:$ \begin{eqnarray}H(x)=\sum _{i=0}^{\infty }{c}_{i}\,{x}^{i}.\end{eqnarray}$Substituting the above power series solution (25) into equation (23), we obtain the following recurrence relation for the coefficients:$ \begin{eqnarray}\begin{array}{rcl}{c}_{n+2} & = & \displaystyle \frac{1}{(n+2)(n+2+2\,j)}\\ & & \times \left[\{\chi -\theta (n+1)\}\,{c}_{n+1}-({\rm{\Theta }}-2\,n){c}_{n}\right],\end{array}\end{eqnarray}$where the various coefficients are$ \begin{eqnarray}\begin{array}{rcl}{c}_{1} & = & \left(\displaystyle \frac{\eta }{(1+2\,j)}-\displaystyle \frac{\theta }{2}\right){c}_{0},\\ {c}_{2} & = & \displaystyle \frac{1}{4(1+j)}\,[(\chi -\theta ){c}_{1}-{\rm{\Theta }}\,{c}_{0}].\end{array}\end{eqnarray}$

As we have written the function H (x) as a power series expansion around the origin in equation (25), then the relativistic bound states solution can be achieved by imposing that the power series expansion (25) becomes a polynomial of degree n. With reference to the recurrence relation (26), we can see that the power series expansion H(x) becomes a polynomial of degree n by imposing the following two conditions [6, 17, 47, 48]:$ \begin{eqnarray}\begin{array}{c}\begin{array}{rcl} & & {\rm{\Theta }}=2\,n,\,(n=1,2,3,4,\ldots )\\ & & {c}_{n+1}=0.\end{array}\end{array}\end{eqnarray}$

By analyzing the condition Θ=2 n, we obtain the following equation for eigenvalue En,l:$ \begin{eqnarray}\begin{array}{rcl} & & \zeta +\displaystyle \frac{{\theta }^{2}}{4}-2(1+j)=2\,n\\ \Rightarrow & & {E}_{n,l}^{2}-2\,{\rm{\Omega }}\,{E}_{n,l}(n+1+{l}_{0}+\sqrt{{l}_{0}^{2}-{e}^{2}\,{\xi }_{c}^{2}})-{k}^{2}-{M}^{2}\\ & & -2\,\xi \,{{\rm{\Omega }}}^{2}=0.\end{array}\end{eqnarray}$The relativistic energy levels associated with nth radial modes is$ \begin{eqnarray}\begin{array}{rcl}{E}_{n,l} & = & {\rm{\Omega }}\left(n+1+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\sqrt{\displaystyle \frac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}\,{\xi }_{c}^{2}}\right)\\ & & \pm \sqrt{{{\rm{\Omega }}}^{2}{\left(n+1+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\sqrt{\displaystyle \frac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}{\xi }_{c}^{2}}\right)}^{2}+{k}^{2}+{M}^{2}+2\,\xi \,{{\rm{\Omega }}}^{2}}.\end{array}\end{eqnarray}$We can see that the energy levels (30) get modifies and depend on the cosmic string α, the Aharonov–Bohm magnetic flux ΦB, and the Coulombic potential constant ξc.

The normalized eigenfunction is given by$ \begin{eqnarray}\displaystyle {\psi }_{n,l}(x)=| N{| }_{n,l}\,{x}^{\sqrt{\tfrac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}{\xi }_{c}^{2}}}\,{{\rm{e}}}^{\tfrac{e{\xi }_{c}{\rm{\Omega }}}{{E}_{n,l}}x}\,{{\rm{e}}}^{-\tfrac{{x}^{2}}{2}}\,H(x),\end{eqnarray}$where ${E}_{n,l}$ is given in equation (30) and $| N{| }_{n,l}$ in the normalization constant, which cannot be determined directly since the function H(x) is a power series polynomial of degree n. One can determine the individual normalization constant by setting n=1, 2, 3, … into the function and using the orthonormal condition over the range $[0,\infty )$.

Now, we impose additional recurrence condition ${c}_{n+1}=0$ to find the individual energy levels and the corresponding wave-functions one by one, as described in [47, 48]. For example, for n = 1, we have c2=0, which is implied in (27), where$ \begin{eqnarray}{c}_{1}=\displaystyle \frac{2}{(\chi -\theta )}\,{c}_{0}\Rightarrow \displaystyle \frac{\eta }{1+2\,j}-\displaystyle \frac{\theta }{2}=\displaystyle \frac{2}{(\chi -\theta )}\end{eqnarray}$is a constraint on physical parameters.

Therefore, the ground state energy level for n = 1 is given by$ \begin{eqnarray}\begin{array}{l}{E}_{1,l}\,=\,{\rm{\Omega }}\left(2+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\sqrt{\displaystyle \frac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}\,{\xi }_{c}^{2}}\right)\,\pm \sqrt{{{\rm{\Omega }}}^{2}{\left(2+\displaystyle \frac{(l-{\rm{\Phi }})}{\alpha }+\sqrt{\displaystyle \frac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}{\xi }_{c}^{2}}\right)}^{2}+{k}^{2}+{M}^{2}+2\,\xi \,{{\rm{\Omega }}}^{2}}.\end{array}\end{eqnarray}$The corresponding ground state radial wave-function is given as$ \begin{eqnarray}\displaystyle \psi {\left(x\right)}_{1,l}=| N{| }_{1,l}\,{x}^{\sqrt{\tfrac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}{\xi }_{c}^{2}}}\,{{\rm{e}}}^{\tfrac{e{\xi }_{c}{\rm{\Omega }}}{{E}_{1,l}}x}\,{{\rm{e}}}^{-\tfrac{{x}^{2}}{2}}({c}_{0}+{c}_{1}\,x),\end{eqnarray}$where ${E}_{1,l}$ is given in (33) and$ \begin{eqnarray}\displaystyle {c}_{1}=-2\,e\,{\xi }_{c}\,\sqrt{\displaystyle \frac{{\rm{\Omega }}}{{E}_{1,l}}}\,\left[1+\displaystyle \frac{\left(\tfrac{(l-{\rm{\Phi }})}{\alpha }-\tfrac{{E}_{1,l}}{{\rm{\Omega }}}\right)}{\left(1+2\,\sqrt{\tfrac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}\,{\xi }_{c}^{2}}\right)}\right]\,{c}_{0}.\end{eqnarray}$The normalization constant corresponding to n=1 can be determined by$ \begin{eqnarray}\displaystyle \begin{array}{l}| N{| }_{1,l}\\ =\,{\left({\displaystyle \int }_{0}^{\infty }{x}^{2\sqrt{\tfrac{{\left(l-{\rm{\Phi }}\right)}^{2}}{{\alpha }^{2}}-{e}^{2}{\xi }_{c}^{2}}}{{\rm{e}}}^{-(x-\tfrac{2e{\xi }_{c}{\rm{\Omega }}}{{E}_{1,l}})x}{\left({c}_{0}+{c}_{1}x\right)}^{2}{\rm{d}}x\right)}^{-\tfrac{1}{2}},\end{array}\end{eqnarray}$where c1 is given in equation (35).

With the general form of the relativistic energy eigenvalue equation (30), we see that the ground state of the Klein–Gordon particle subject to an electromagnetic potentials is defined by the quantum number n=1 instead of the quantum number n=0.

Observe that the relativistic energy eigenvalue equation (30) is dependent on the Aharonov–Bohm geometric quantum phase [37]. This dependence of relativistic energy eigenvalue on geometric quantum phase gives rise to an analogous effect on the Aharonov–Bohm effect for bound states [37, 4244]. Thus, we find that ${E}_{n,\bar{l}}({{\rm{\Phi }}}_{B}+{{\rm{\Phi }}}_{0})={E}_{n,\bar{l}\mp \tau }({{\rm{\Phi }}}_{B})$ where ${{\rm{\Phi }}}_{0}=\pm \tfrac{2\,\pi \,\alpha }{e}\,\tau $ with $\tau =1,2,3,\ldots $ and $\bar{l}=\tfrac{l}{\alpha }$.

We can see in both expressions of energy eigenvalues that the z-component of the angular momentum l is shifted:$ \begin{eqnarray}{l}_{0}=\displaystyle \frac{1}{\alpha }(l-{\rm{\Phi }})\end{eqnarray}$giving an effective angular momentum due both to the boundary condition, which states that the total angle around the string is 2 πα, and to minimal coupling with electromagnetic interactions.

Formula equation (37) suggests that when the particle circles the string, the wave-function changes according to$ \begin{eqnarray}{\rm{\Psi }}\to {\rm{\Psi }}^{\prime} ={{\rm{e}}}^{2{\rm{i}}\pi {l}_{0}}\,{\rm{\Psi }}=\mathrm{Exp}\left\{\displaystyle \frac{2\,\pi \,{\rm{i}}}{\alpha }\left(l-\displaystyle \frac{e\,{{\rm{\Phi }}}_{B}}{2\,\pi }\right)\right\}\,{\rm{\Psi }}.\end{eqnarray}$An immediate consequence of equation (37) is that the angular momentum operator may be redefined as$ \begin{eqnarray}{\hat{l}}_{0}=-\displaystyle \frac{{\rm{i}}}{\alpha }\left({\partial }_{\phi }-{\rm{i}}\,\displaystyle \frac{e\,{{\rm{\Phi }}}_{B}}{2\,\pi }\right),\end{eqnarray}$where the additional term $-\tfrac{e\,{{\rm{\Phi }}}_{B}}{2\,\pi \,\alpha }$ takes into account the Aharonov–Bohm magnetic flux ΦB (internal magnetic field).

3. Conclusions

In this paper, we have presented a detailed study on the ground state of a bosonic massive charged particle in a Gödel-type space–time with interactions. By means of minimal substitution, we have introduced an electromagnetic four-vector potential into the Klein–Gordon equation. In case 1 of section 2, we have considered zero potential with non-zero Aharonov–Bohm magnetic flux (ΦB) as the angular component of the electromagnetic four-vector potential, and derived the final form of the radial wave equation. We have then solved it using the Nikiforov–Uvarov method, and obtained a relativistic energy eigenvalue equation (13) and a corresponding normalized eigenfunction equation (14). We have seen that the relativistic energy eigenvalue equation (13) for ${{\rm{\Phi }}}_{B}\to 0$ and $\xi \to 0$ reduces to the result obtained in [9] and subsequently to the results in [3] provided $\alpha \to 1$. In case 2 of section 2, we have considered both Coulomb potential and the Aharonov–Bohm magnetic quantum flux. The radial equation of motion has derived by means of an appropriate ansatz and it has shown that such equation can be expressed in terms of the biconfluent Heun’s differential equation. We have solved this equation using a power series expansion around the origin before finally imposing a two conditions equation (28) to terminate the power series solution with a polynomial of degree n. Using the condition equation (28), we have obtained the energy eigenvalue equation (30), and have seen that the relativistic energy eigenvalue is modified, even though there is no direct interaction between the particles and the external magnetic fields. By imposing the additional recurrence condition ${c}_{n+1}=0$, we have obtained the ground state energy level equation (33), and corresponding ground state radial wave-function equation (34) with equation (35) for the quantum number n=1. The expression for the ground state energy level reveals the possibility of establishing a quantum condition between the energy of a bosonic massive charged particle and the parameter Ω that characterizes the vorticity parameter of the space–time study here. We have seen in both cases that the relativistic energy eigenvalue is a periodic function of the geometric quantum phase [37], that is, ${E}_{n,\bar{l}}({{\rm{\Phi }}}_{B}+{{\rm{\Phi }}}_{0})={E}_{n,\bar{l}\mp \tau }({{\rm{\Phi }}}_{B})$ where, ${{\rm{\Phi }}}_{0}=\pm \tfrac{2\,\pi \,\alpha }{e}\,\tau $ with τ=1, 2, … and $\bar{l}=\tfrac{l}{\alpha }$. This dependence of the relativistic energy eigenvalue on the geometric quantum phase gives rise to an analog effect on the Aharonov–Bohm effect for bound states [4244]. In addition, in both the cases under discussion, we have seen that the angular momentum quantum number l is shifted, that is, $l\to {l}_{0}=\tfrac{1}{\alpha }(l-{\rm{\Phi }})$, an effective angular quantum number. For $\alpha \to 1$, the change in angular momentum quantum number, ${\rm{\Delta }}l=l-{l}_{0}=\tfrac{e\,{{\rm{\Phi }}}_{B}}{2\,\pi }$ is directly proportional to the magnetic quantum flux ΦB.

Therefore, in this paper, we have shown some results which, combined with results previously obtained in [3, 9], demonstrate many interesting possibilities. This is a fundamental subject in physics, and the connections between these theories (gravitation and quantum mechanics) are not well understood.

Acknowledgments

The author sincerely acknowledges the anonymous kind referee for their valuable comments and suggestions which have greatly improved the present paper.


Reference By original order
By published year
By cited within times
By Impact factor

Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations Berlin Springer
[Cited within: 1]

Berestetskii V Pitaevskii L Lifshitz E 2012 Quantum Electrodynamics vol 4Amsterdam Elsevier
[Cited within: 1]

Drukker N Fiol B Simon J 2004 J. Cosmol. Astropart. Phys.JCAP10(2004)012
DOI:10.1088/1475-7516/2004/10/012 [Cited within: 6]

Das S Gegenberg J 2008 Gen. Relativ. Grav. 40 2115
DOI:10.1007/s10714-008-0619-3 [Cited within: 1]

Landau L D Lifshitz E M 1977 Quantum Mechanics: The Non-Relativistic Theory Oxford Pergamon
[Cited within: 1]

Furtado C da Cunha B C G Moraes F de Mello E R B Bezerra V B 1994 Phys. Lett. A 195 90
DOI:10.1016/0375-9601(94)90432-4 [Cited within: 2]

Figueiredo B D B Soares I D Tiomno J 1992 Class. Quantum Grav. 9 1593
DOI:10.1088/0264-9381/9/6/015 [Cited within: 1]

Wang Z Long Z Long C Wu M 2015 Eur. Phys. J. Plus 130 36
DOI:10.1140/epjp/i2015-15036-2 [Cited within: 2]

Carvalho J de M Carvalho A M Furtado C 2014 Eur. Phys. J. C 74 2935
DOI:10.1140/epjc/s10052-014-2935-y [Cited within: 7]

Carvalho J de M Carvalho A M Cavalcante E Furtado C 2016 Eur. Phys. J. C 76 365
DOI:10.1140/epjc/s10052-016-4189-3 [Cited within: 1]

Garcia G Q de S Oliveira J R Bakke K Furtado C 2017 Eur. Phys. J. Plus 132 123
DOI:10.1140/epjp/i2017-11399-6 [Cited within: 1]

Garcia G Q de S Oliveira J R Furtado C 2018 Int. J. Mod. Phys. D 27 1850027
DOI:10.1142/S021827181850027X [Cited within: 1]

Havare A Yetkin T 2002 Class. Quantum Grav. 19 1
DOI:10.1088/0264-9381/19/11/303 [Cited within: 1]

Ahmed F 2018 Eur. Phys. J. C 78 598
DOI:10.1140/epjc/s10052-018-6082-8 [Cited within: 1]

Vitoria R L L Furtado C Bakke K 2018 Eur. Phys. J. C 78 44
DOI:10.1140/epjc/s10052-018-5524-7 [Cited within: 1]

Ahmed F 2019 Eur. Phys. J. C 79 682
DOI:10.1140/epjc/s10052-019-7196-3 [Cited within: 1]

Ahmed F 2019 Eur. Phys. J. C 79 104
DOI:10.1140/epjc/s10052-019-6621-y [Cited within: 3]

Ahmed F 2019 Eur. Phys. J. C 79 534
DOI:10.1140/epjc/s10052-019-7029-4 [Cited within: 1]

Ahmed F Hassanabadi H 2020 Mod. Phys. Lett. A 35 2050031
DOI:10.1142/S0217732320500315 [Cited within: 1]

Ahmed F 2020 Commun. Theor. Phys. 72 025103
DOI:10.1088/1572-9494/ab6187 [Cited within: 1]

Ahmed F 2019 Gen. Relativ. Grav. 51 69
DOI:10.1007/s10714-019-2552-z [Cited within: 1]

Eshghi M Hamzavi M 2018 Eur. Phys. J. C 78 522
DOI:10.1140/epjc/s10052-018-5984-9 [Cited within: 1]

Silva E O 2018 Eur. Phys. J. Plus 133 530
DOI:10.1140/epjp/i2018-12356-7 [Cited within: 2]

Ahmed F 2020 Eur. Phys. J. Plus 135 174
DOI:10.1140/epjp/s13360-020-00196-z [Cited within: 1]

Ahmed F 2020 Eur. Phys. J. Plus 135 108
DOI:10.1140/epjp/s13360-020-00199-w [Cited within: 1]

Santosa L C N Barros C CJr 2018 Eur. Phys. J. C 78 13
DOI:10.1140/epjc/s10052-017-5476-3 [Cited within: 1]

Wen-Chao Q 2003 Chin. Phys. 12 1054
DOI:10.1088/1009-1963/12/10/302 [Cited within: 1]

Motavalli H Akbarieh A R 2010 Mod. Phys. Lett. A 25 2523
DOI:10.1142/S0217732310033529

Yasuk F Durmus A Boztosun I 2006 J. Math. Phys. 47 082302
DOI:10.1063/1.2227258

de Oliveira A L C de Mello E R B 2006 Class. Quantum Grav. 23 5249
DOI:10.1088/0264-9381/23/17/009 [Cited within: 2]

Asada H Futamase T 1997 Phys. Rev. D 56 R6062
DOI:10.1103/PhysRevD.56.R6062 [Cited within: 1]

Chrichfield C L 1976 J. Math. Phys. 17 261
DOI:10.1063/1.522891 [Cited within: 1]

Crater H W Yoon J-H Wong C Y 2009 Phys. Rev. D 79 034011
DOI:10.1103/PhysRevD.79.034011 [Cited within: 1]

Khalil V R 2005 Phys. Rev. A 71 012105
DOI:10.1103/PhysRevA.71.012105

Bakke K Furtado C 2015 Ann. Phys., NY 355 48
DOI:10.1016/j.aop.2015.01.028

Medeiros E R F de Mello E R B 2012 Eur. Phys. J. C 72 2051
DOI:10.1140/epjc/s10052-012-2051-9 [Cited within: 3]

Aharonov Y Bohm D 1959 Phys. Rev. 115 485
DOI:10.1103/PhysRev.115.485 [Cited within: 6]

Vitória R L L Bakke K 2018 Eur. Phys. J. Plus 133 490
DOI:10.1140/epjp/i2018-12310-9 [Cited within: 1]

Vitória R L L Bakke K 2018 Int. J. Mod. Phys. D 27 1850005
DOI:10.1142/S0218271818500050

Vitória R L L Bakke K 2016 Gen. Relativ. Grav. 48 161
DOI:10.1007/s10714-016-2156-9 [Cited within: 1]

Nikiforov A F Uvarov V B 1988 Special Functions of Mathematical Physics Basel Birkhauser
[Cited within: 1]

Peshkin M Tonomura A 1989 Lect. Notes Phys. vol 340Berlin Springer
[Cited within: 3]

Furtado C Bezerra V B Moraes F 2000 Mod. Phys. Lett. A 15 253
DOI:10.1142/S0217732300000244

Bezerra V B 1989 J. Math. Phys.J. Math. Phys. 30 2895
DOI:10.1063/1.528472 [Cited within: 3]

Ronveaux A 1995 Heun’s Differential Equations Oxford Oxford University Press
[Cited within: 1]

Slavyanov S Y Lay W 2000 Special Functions: A Unified Theory Based in Singularities New York Oxford University Press
[Cited within: 1]

Vercin A 1991 Phys. Lett. B 260 120
DOI:10.1016/0370-2693(91)90978-Y [Cited within: 2]

Myrhein J Halvorsen E Vercin A 1992 Phys. Lett. B 278 171
DOI:10.1016/0370-2693(92)90729-N [Cited within: 2]

相关话题/Aharonovndash effect bound