删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Effect of ion drag on a pulsational mode of gravitational collapse

本站小编 Free考研考试/2022-01-02

闂傚倸鍊峰ù鍥敋瑜忛埀顒佺▓閺呯娀銆佸▎鎾冲唨妞ゆ挾鍋熼悰銉╂⒑閸︻厼鍔嬫い銊ユ噽婢规洘绻濆顓犲幍闂佸憡鎸嗛崨顓狀偧闂備焦濞婇弨閬嶅垂閸洖桅闁告洦鍨扮粻娑㈡煕閹捐尙鍔嶉柛瀣斿喚娓婚柕鍫濈箳閸掓壆鈧鍠栨晶搴ㄥ箲閵忕姭鏀介悗锝庝簽閸旓箑顪冮妶鍡楃瑨閻庢凹鍓涚划濠氬Ψ閿旇桨绨婚梺鍝勫暊閸嬫捇鏌涙惔鈥虫毐闁伙絿鍏樻俊鐑藉Ψ閵忊剝鏉告俊鐐€栧濠氭偤閺傚簱鏋旀俊顖涚湽娴滄粓鏌ㄩ弬鍨挃闁靛棙顨婂濠氬磼濮橆兘鍋撻悜鑺ュ€块柨鏃堟暜閸嬫挾绮☉妯诲櫧闁活厽鐟╅弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ棝濡甸崟顖氭闁割煈鍠掗幐鍐⒑閸涘⿴娈曠€光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢搴b偓锝庡墰缁愭姊绘担鍝ワ紞缂侇噮鍨拌灋闁告劦鍠栭拑鐔哥箾閹存瑥鐏╅崬顖炴⒑闂堟稓绠氶柛鎾寸箞閹敻鏁冮埀顒勫煘閹达附鍊烽柟缁樺笚閸婎垶鎮楅崗澶婁壕闂佸綊妫跨粈渚€鎷戦悢鍏肩厪闁割偅绻嶅Σ鍝ョ磼閻欐瑥娲﹂悡鏇熴亜椤撶喎鐏ラ柡瀣枑缁绘盯宕煎┑鍫濈厽濠殿喖锕ㄥ▍锝囨閹烘嚦鐔兼偂鎼存ɑ瀚涢梻鍌欒兌鏋紒銊︽そ瀹曟劕螖閸愩劌鐏婂┑鐐叉閸旀洜娆㈤悙鐑樼厵闂侇叏绠戞晶鐗堛亜閺冣偓鐢€愁潖濞差亝鍤冮柍鍦亾鐎氭盯姊洪崨濠冨鞍闁烩晩鍨堕悰顔界節閸屾鏂€闁诲函缍嗛崑鍡涘储娴犲鈷戠紓浣光棨椤忓嫷鍤曢柤鎼佹涧缁剁偤鏌涢弴銊ュ箰闁稿鎸鹃幉鎾礋椤掑偆妲伴梻浣瑰濞插繘宕规禒瀣瀬闁规壆澧楅崐椋庣棯閻楀煫顏呯妤e啯鐓ユ繝闈涙椤庢霉濠婂啫鈷旂紒杈ㄥ浮楠炲鈧綆鍓涜ⅵ闂備礁鎼惉濂稿窗閹邦兗缂氶煫鍥ㄦ煟閸嬪懘鏌涢幇銊︽珦闁逞屽墮缁夋挳鈥旈崘顔嘉ч柛鈩兠弳妤呮⒑绾懏鐝柟鐟版处娣囧﹪骞橀鑲╊唺闂佽鎯岄崢浠嬪磽閻㈠憡鈷戦柟顖嗗嫮顩伴梺绋款儏濡繃淇婄€涙ḿ绡€闁稿本顨嗛弬鈧梻浣虹帛閿曗晠宕戦崟顒傤洸濡わ絽鍟埛鎴︽煕濞戞﹫鍔熼柍钘夘樀閺岋絾骞婇柛鏃€鍨甸锝夊蓟閵夘喗鏅㈤梺鍛婃处閸撴瑩鍩€椤掆偓閻栧ジ寮婚敐澶婄疀妞ゆ挾鍋熺粊鐑芥⒑閹惰姤鏁辨慨濠咁潐缁岃鲸绻濋崟顏呭媰闂佺ǹ鏈懝楣冿綖閸ヮ剚鈷戦柛婵嗗閻掕法绱掔紒妯肩畵闁伙綁鏀辩缓浠嬪礈閸欏娅囬梻渚€娼х换鎺撴叏鐎靛摜涓嶉柟娈垮枤绾句粙鏌涚仦鍓ф噮闁告柨绉甸妵鍕Ω閵夛箑娈楅柦妯荤箞濮婂宕奸悢鎭掆偓鎺楁煛閸☆參妾柟渚垮妼椤粓宕卞Δ鈧导搴g磽娴g懓鏁剧紒韫矙濠€渚€姊洪幐搴g畵閻庢凹鍨堕、妤呮偄鐠佸灝缍婇幃鈩冩償閵忕姵鐏庢繝娈垮枛閿曘儱顪冮挊澶屾殾闁靛⿵濡囩弧鈧梺绋挎湰缁酣骞婇崱妯肩瘈缁剧増蓱椤﹪鏌涚€n亝鍣介柟骞垮灲瀹曞ジ濡疯缁侊箓姊洪崷顓烆暭婵犮垺锕㈤弻瀣炊椤掍胶鍘搁梺鎼炲劗閺呮盯寮搁幋鐐电闁告侗鍠氭晶顒傜磼缂佹ḿ鈯曟繛鐓庣箻瀹曟粏顦寸悮锝嗙節閻㈤潧浠滈柟閿嬪灩缁辩偞鎷呴崫銉︽闂佺偨鍎查弸濂稿醇椤忓牊鐓曟い鎰╁€曢弸搴ㄦ煃瑜滈崜娑㈠极婵犳艾钃熼柨婵嗩槸椤懘鏌eΟ鍝勬倎缂侇喚鏁诲娲箹閻愭祴鍋撻幇鏉跨;闁瑰墽绮埛鎺懨归敐鍫綈闁稿濞€閺屾盯寮捄銊愩倝鏌熼獮鍨伈鐎规洜鍠栭、姗€鎮欓懠顑垮枈闂備浇宕垫慨鏉懨洪妶鍜佸殨妞ゆ帒瀚猾宥夋煕鐏炵虎娈斿ù婊堢畺閺屻劌鈹戦崱娑扁偓妤€顭胯閸楁娊寮婚妸銉㈡闁惧浚鍋勯锟�
547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛瀵粯绻濋崶銊︽珳婵犮垼娉涢敃锕傛偪閸ヮ剚鈷戦悷娆忓缁€鍐┿亜閺囧棗鎳愰惌鍡涙煕閹般劍鏉哄ù婊勭矒閻擃偊宕堕妸锕€闉嶅銈冨劜缁捇寮婚敐澶婄閻庨潧鎲¢崚娑樷攽椤旂》鏀绘俊鐐舵閻e嘲螖閸涱厾顦ч梺鍏肩ゴ閺呮盯宕甸幒妤佲拻濞达絽鎲¢幉鎼佹煕閿濆啫鍔︾€规洘鍨垮畷鐔碱敍濞戞ü鎮i梻浣虹帛閸ㄥ吋鎱ㄩ妶澶婄柧闁归棿鐒﹂悡銉╂煟閺囩偛鈧湱鈧熬鎷�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟閿濆顫呴柕蹇婃櫆濮e矂姊虹粙娆惧剱闁圭懓娲ら悾鐤亹閹烘繃鏅濋梺鎸庣箓濞诧箓顢樻繝姘拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柛娆忣槶娴滄粍銇勯幇鈺佺労婵″弶妞介弻娑㈡偐鐠囇冧紣濡炪倖鎸搁崥瀣嚗閸曨剛绡€闁告劦鍘鹃崣鎴︽⒒閸屾瑧绐旈柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴盯鎮橀悙鐧昏鏅堕懠顑藉亾閸偅绶查悗姘煎櫍閸┾偓妞ゆ帒锕︾粔闈浢瑰⿰鍕煉闁挎繄鍋為幆鏃堝煢閳ь剟寮ㄦ禒瀣厽闁归偊鍨伴惃鍝勵熆瑜庨惄顖炲蓟濞戙垹惟闁靛/鍌濇闂備椒绱徊鍧楀礂濮椻偓瀵偊骞樼紒妯轰汗闂佽偐鈷堥崜锕€危娴煎瓨鐓熼柣鏂挎憸閻﹦绱掔紒妯虹闁告帗甯掗埢搴ㄥ箻瀹曞洤鈧偤姊洪崘鍙夋儓闁哥喍鍗抽弫宥呪堪閸曨厾鐦堥梺闈涢獜缁插墽娑垫ィ鍐╃叆闁哄浂浜顕€鏌¢崨顐㈠姦婵﹦绮幏鍛村川婵犲倹娈橀梺鐓庣仌閸ャ劎鍘辨繝鐢靛Т閸熺増鏅舵潏鈺冪=闁稿本绋掑畷宀勬煙缁嬪尅鏀荤紒鏃傚枛閸╋繝宕掑☉杈棃闁诲氦顫夊ú锔界濠靛绠柛娑卞灡閸犲棝鏌涢弴銊ュ箺鐞氭瑩姊婚崒姘偓椋庣矆娴i潻鑰块梺顒€绉撮崒銊ф喐閺冨牆绠栨繛宸簻鎯熼梺瀹犳〃閼冲爼顢欓崶顒佲拺闁告挻褰冩禍婵囩箾閸欏澧甸柟顔惧仱瀹曞綊顢曢悩杈╃泿闂備胶鎳撻顓㈠磻濞戙埄鏁嬫繝濠傛噽绾剧厧霉閿濆懏鎯堟い锝呫偢閺屾洟宕惰椤忣厽銇勯姀鈩冪濠殿喒鍋撻梺瀹犳〃缁€浣圭珶婢舵劖鈷掑ù锝囨嚀椤曟粎绱掔€n偄娴€规洘绻傞埢搴ㄥ箻鐠鸿櫣銈﹂梺璇插嚱缂嶅棝宕抽鈧顐㈩吋閸℃瑧鐦堟繝鐢靛Т閸婅鍒婇崗闂寸箚闁哄被鍎查弫杈╃磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿闂傚倷鐒﹂幃鍫曞礉瀹€鈧槐鐐寸節閸屻倕娈ㄥ銈嗗姂閸婃鎯屽▎鎰箚妞ゆ劑鍊栭弳鈺呮煕鎼存稑鈧骞戦姀鐘斀閻庯綆浜為崐鐐烘⒑闂堟胆褰掑磿閺屻儺鏁囨繛宸簼閳锋垿鏌涘┑鍡楊伌婵″弶鎮傞弻锝呂旀担铏圭厜閻庤娲橀崹鍧楃嵁閹烘嚦鏃堝焵椤掑嫬瑙︾憸鐗堝笚閻撴盯鏌涢幇鈺佸濠⒀勭洴閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茬兘姊绘担鍛靛湱鎹㈤幇鐗堝剶闁兼祴鏅滈~鏇㈡煙閻戞﹩娈㈤柡浣革躬閺屾稖绠涢幙鍐┬︽繛瀛樼矒缁犳牠骞冨ú顏勭鐎广儱妫涢妶鏉款渻閵堝骸浜滄い锔炬暬閻涱噣宕卞☉妯活棟闁圭厧鐡ㄩ幐濠氾綖瀹ュ鈷戦柛锔诲幖閸斿鏌涢妸銊︾彧缂佹梻鍠栧鎾偄閾忚鍟庨梺鍝勵槸閻楀棙鏅舵禒瀣畺濠靛倸鎲¢悡娑㈡煕濠娾偓缁€浣圭濠婂牆纭€闂侇剙绉甸悡鏇熴亜閹邦喖孝闁告梹绮撻弻锝夊箻鐎涙ḿ顦伴梺鍝勭灱閸犳牠骞冨⿰鍏剧喓鎷犻弻銉р偓娲⒒娴e懙褰掝敄閸ャ劎绠鹃柍褜鍓熼弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戞粎鐤€闁哄啫鍊堕埀顒佸笚缁绘盯宕遍幇顒備患濡炪値鍋呯换鍕箲閸曨個娲敂閸滃啰鑸瑰┑鐘茬棄閺夊簱鍋撹瀵板﹥绂掔€n亞鏌堝銈嗙墱閸嬫稓绮婚悩铏弿婵☆垵顕ч。鎶芥煕鐎n偅宕岄柣娑卞櫍瀹曞綊顢欓悡搴經闂傚倷绀侀幗婊堝窗閹惧绠鹃柍褜鍓涢埀顒冾潐濞叉﹢宕归崸妤冨祦婵☆垰鐨烽崑鎾斥槈濞咁収浜、鎾诲箻缂佹ǚ鎷虹紓鍌欑劍閿氶柣蹇ョ畵閺屻劌顫濋懜鐢靛帗閻熸粍绮撳畷婊冣槈閵忕姷锛涢梺缁樻⒒閸樠囨倿閸偁浜滈柟鐑樺灥閺嬨倖绻涢崗鐓庡闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞叉ê煤閻旂鈧礁鈽夐姀鈥斥偓鐑芥煠绾板崬澧┑顕嗛檮娣囧﹪鎮欓鍕ㄥ亾閺嶎厼鍨傚┑鍌溓圭壕鍨攽閻樺疇澹樼紒鈧崒鐐村€堕柣鎰緲鐎氬骸霉濠婂嫮鐭掗柡宀€鍠栭獮鍡氼槾闁圭晫濞€閺屾稒绻濋崘銊ヮ潚闂佸搫鐬奸崰鏍€佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鑼枑缁傚秹宕奸弴鐘茬ウ闂佹悶鍎洪崜娆愬劔闂備線娼чˇ顓㈠磹閺団懞澶婎潩椤戣姤鏂€闂佺粯鍔橀崺鏍亹瑜忕槐鎺楁嚑椤掆偓娴滃墽绱掗崒姘毙ч柟宕囧仱婵$柉顧佹繛鏉戝濮婃椽骞愭惔銏紩闂佺ǹ顑嗛幑鍥涙担鐟扮窞闁归偊鍘鹃崢閬嶆椤愩垺澶勬繛鍙夌墱閺侇噣宕奸弴鐔哄幍闂佺ǹ绻愰崥瀣磹閹扮増鐓涢悘鐐垫櫕鍟稿銇卞倻绐旈柡灞剧缁犳盯寮崒妤侇潔闂傚倸娲らˇ鐢稿蓟濞戙垹唯妞ゆ梻鍘ч~鈺冪磼閻愵剙鍔ら柕鍫熸倐瀵寮撮悢铏圭槇闂婎偄娲﹀ú婊堝汲閻樺樊娓婚柕鍫濇缁€澶婎渻鐎涙ɑ鍊愭鐐茬墦婵℃悂濡锋惔锝呮灁缂侇喗鐟╁畷褰掝敊绾拌鲸缍嶉梻鍌氬€烽懗鑸电仚濡炪倖鍨靛Λ婵嬬嵁閹邦厾绡€婵﹩鍓涢鍡涙⒑閸涘﹣绶遍柛銊╀憾瀹曚即宕卞☉娆戝幈闂佸搫娲㈤崝灞炬櫠娴煎瓨鐓涢柛鈩兠崫鐑樻叏婵犲嫮甯涢柟宄版嚇瀹曨偊宕熼锛勫笡闂佽瀛╅鏍窗濡ゅ懎纾垮┑鍌溓规闂佸湱澧楀妯肩矆閸愨斂浜滈煫鍥ㄦ尰椤ョ姴顭跨捄鍝勵仾濞e洤锕俊鎯扮疀閺囩偛鐓傞梻浣告憸閸c儵宕圭捄铏规殾闁硅揪闄勯崑鎰磽娴h疮缂氶柛姗€浜跺娲棘閵夛附鐝旈梺鍝ュ櫏閸嬪懘骞堥妸鈺佺劦妞ゆ帒瀚埛鎴犵磼鐎n偒鍎ラ柛搴㈠姍閺岀喓绮欏▎鍓у悑濡ょ姷鍋涚换妯虹暦閵娧€鍋撳☉娅亝绂掗幆褜娓婚柕鍫濇婢ь剟鏌ら悷鏉库挃缂侇喖顭烽獮瀣晜鐟欙絾瀚藉┑鐐舵彧缁蹭粙骞夐敓鐘茬畾闁割偁鍎查悡鏇炩攽閻樻彃顎愰柛锔诲幖瀵煡姊绘笟鈧ḿ褏鎹㈤崼銉ョ9闁哄洢鍨洪崐鍧楁煕椤垵浜栧ù婊勭矒閺岀喓鈧數枪娴犳粍銇勯弴鐔虹煂缂佽鲸甯楅幏鍛喆閸曨厼鍤掓俊鐐€ら崣鈧繛澶嬫礋楠炲骞橀鑲╊槹濡炪倖宸婚崑鎾剁棯閻愵剙鈻曢柟顔筋殔閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝囩《濡插牊淇婇娑氱煂闁哥姴閰i幃楣冨焺閸愯法鐭楁繛杈剧到婢瑰﹤螞濠婂嫮绡€闁汇垽娼ф禒鈺呮煙濞茶绨界紒杈╁仱閸┾偓妞ゆ帊闄嶆禍婊勩亜閹扳晛鐒烘俊顖楀亾闂備浇顕栭崳顖滄崲濠靛鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱鐢繝寮诲☉姘勃闁硅鍔曢ˉ婵嬫⒑闁偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欑濠€閬嶅磻閹剧繀缂氭繛鍡樻嫴婢跺⿴娼╅柤鍝ユ暩閸橀亶鏌f惔顖滅У闁稿鎳愭禍鍛婂鐎涙ḿ鍘甸悗鐟板婢ф宕甸崶鈹惧亾鐟欏嫭绀堥柛蹇旓耿閵嗕礁螣鐞涒剝鏁犻梺璇″瀻閸屾凹妫滄繝鐢靛Х閺佸憡鎱ㄩ弶鎳ㄦ椽鏁冮崒姘憋紮闂佸壊鐓堥崑鍡欑不妤e啯鐓欓悗娑欋缚缁犳﹢鏌$€n亜鏆熺紒杈ㄥ浮閸┾偓妞ゆ帒鍊甸崑鎾绘晲鎼粹剝鐏嶉梺缁樻尭閸熶即骞夌粙搴撳牚闁割偅绻勯ˇ褍鈹戦悙鏉戠仸婵ǜ鍔戦幆宀勫幢濡炴洖缍婇弫鎰板醇閻旂补鍋撻崘顔界厽闁圭儤鍩婇煬顒勬煛瀹€鈧崰搴ㄥ煝閹捐鍨傛い鏃傛櫕娴滄劙姊绘担鍛靛綊顢栭崱娑樼闁归棿绀侀悡鈥愁熆鐠哄搫顦柛瀣崌瀹曠兘顢橀悙鎰╁劜閵囧嫰鏁傞崹顔肩ギ濠殿喖锕ュ浠嬪蓟閸涘瓨鍊烽柤鑹版硾椤忣參姊洪崨濞掝亪骞夐敍鍕床婵炴垯鍨圭痪褔鏌熺€电ǹ浠滈柡瀣Т椤啴濡堕崘銊т痪闂佹寧娲忛崹褰掓偩閻戠瓔鏁冮柨鏇楀亾閸烆垶鎮峰⿰鍐伇缂侇噮鍘藉鍕箾閻愵剚鏉搁梺鍦劋婵炲﹤鐣烽幇鏉跨缂備焦锚閳ь剙娼¢弻銊╁籍閳ь剙鐣峰Ο缁樺弿闁惧浚鍋呴崣蹇斾繆椤栨氨浠㈤柣鎾村姍閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茶埖淇婇悙顏勨偓褏鎷嬮敐鍡曠箚闁搞儺鍓欓悞鍨亜閹哄棗浜惧┑鐘亾閺夊牄鍔庢禒姘繆閻愵亜鈧倝宕㈡總绋垮簥闁哄被鍎查崑鈺呮煟閹达絽袚闁哄懏鐓¢弻娑㈠Ψ椤栫偞顎嶉梺鍛婃礀閸熸潙顫忛搹鍦煓闁圭ǹ瀛╅幏鍗烆渻閵堝啫濡奸柟鍐茬箳缁顓兼径濠勭暰濡炪値鍏橀埀顒€纾粔娲煛娴g懓濮嶇€规洏鍔戦、娆撳礂閸忚偐鏆梻鍌氬€风粈渚€骞夐垾瓒佹椽鎮㈤搹閫涚瑝闂佸搫绋侀崢濂告嫅閻斿吋鐓ユ繝闈涙-濡插綊鏌涙繝鍕幋闁哄本绋戦埢搴ょ疀閿濆棌鏋旀繝纰樻閸嬪懘宕归崹顕呮綎婵炲樊浜濋悞濠氭煟閹邦垰钄奸悗姘嵆閺屾稑螣缂佹ê鈧劙鏌″畝瀣М妤犵偞甯¢幃娆撴偨閸偅顔撻梺璇插椤旀牠宕抽鈧畷婊堟偄妞嬪孩娈鹃梺鍦劋閸╁牆岣块埡鍛叆婵犻潧妫欓ˉ鐘绘煕濞嗗繐鏆炵紒缁樼箓閳绘捇宕归鐣屼壕闂備胶顢婂▍鏇㈠箰閸濄儱寮查梻浣虹帛鏋い鏇嗗懎顥氬┑鐘崇閻撴瑩鏌熼鍡楁噺閹插吋绻濆▓鍨仭闁瑰憡濞婂璇测槈濡攱顫嶅┑顔筋殔閻楀﹪寮ィ鍐┾拺闂傚牃鏅濈粙濠氭煙椤旂厧鈧灝顕f繝姘櫜闁糕剝锚閸斿懘姊洪棃娑氱濠殿喗鎸冲绋库枎閹惧鍘介梺缁樏崯鎸庢叏婢舵劖鐓曢柣妯虹-婢х數鈧娲樺浠嬪春閳ь剚銇勯幒宥夋濞存粍绮撻弻鐔衡偓鐢登规禒婊勩亜閺囩喓鐭嬮柕鍥у閺佸啴宕掗妶鍡╂缂傚倷娴囨ご鎼佸箰閹间緡鏁囧┑鍌溓瑰钘壝归敐鍤借绔熸惔銊︹拻濞达絼璀﹂弨鐗堢箾閸涱喗绀嬮柟顔ㄥ洦鍋愰悹鍥皺閻ゅ洭姊虹紒妯曟垵顪冮崸妤€鏋侀柛鈩冪⊕閻撴洟鏌熼柇锕€鏋涘ù婊堢畺閺岋箓骞嬪┑鎰ㄧ紓浣介哺閹瑰洤鐣烽幒鎴旀瀻闁瑰瓨绻傞‖澶愭⒒娴e憡鍟為柛鏃€娲熼垾锕傛倻閻e苯绁﹂棅顐㈡处缁嬫帡寮查幖浣圭叆闁绘洖鍊圭€氾拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偅绋堥崑鎾存媴閼叉繃妫冨畷銊╊敊闂傚鐩庨梻鍌欑劍閸庡磭鎹㈤幇顒婅€块梺顒€绉甸崑鍌炴倵閿濆骸鏋熼柍閿嬪灴閹嘲鈻庤箛鎿冧痪闂佺ǹ瀛╅〃濠囧蓟濞戙垹惟闁靛/宥囩濠电姰鍨奸~澶娒洪悢鐓庢瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�
Wei-Heng Yang(杨伟恒)1,2, Hui Chen(陈辉),1,2, San-Qiu Liu(刘三秋)1,21Department of Physics, Nanchang University, Nanchang 330031, China
2Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang 330031, China

Received:2020-01-12Revised:2020-03-21Accepted:2020-03-23Online:2020-06-24


Abstract
The effect of ion drag on the pulsational mode of gravitational collapse (PMGC) is investigated within the partially charged dusty plasma model by fluid dynamics. It is found that the ion drag force significantly enhances the instability of the PMGC. In addition, it is shown that the instability of the PMGC is influenced by the ratio of the abundances of charged to neutral grains. These results can be relevant for the planetesimal formation in dark interstellar clouds.
Keywords: ion drag;Jeans instability;PMGC;dusty plasma


PDF (411KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Wei-Heng Yang(杨伟恒), Hui Chen(陈辉), San-Qiu Liu(刘三秋). Effect of ion drag on a pulsational mode of gravitational collapse. Communications in Theoretical Physics, 2020, 72(7): 075504- doi:10.1088/1572-9494/ab8a1e

1. Introduction

The dark interstellar clouds, which consist of ${{\rm{H}}}_{2}$, CO and the dusty grains of silicates, iron, etc, are viewed as ideal sites for star formation [1]. It is well known that these clouds are usually sub-divided into clusters of size10 pc and mass 103 to 104${\rm{M}}\odot $, which form low-mass stars due to gravitational collapse [2]. The mass of a star formed in a cloud core has been discussed by Nakano et al [3]. In particular, the HII regions in the dark interstellar clouds may exist within the dusty clouds and hydrogens in a low density diffused plasma state because it is relatively hotter, with the temperature ranging from 5000 K–10 000 K [4]. Star formation is a very hot topic in both plasma [5, 6] and astrophysics [7] owing to its important role in exploration of the Universe. As we all know, the conditions in which a cloud can successfully collapse into a protostar depend on whether the gravitational energy exceeds the sum of the thermal, rotational and magnetic energies. The dust in the HII regions is always negatively charged, depending on the following two mechanisms [7, 8]: (a) as it is immersed in such a low density and diffused plasma state, the dust can acquire a net electric charge; (b) due to the interstellar radiation fields, some of the dust can easily absorb charges from the plasma environment so that they will carry a net electric charge, whereas the other part will remain electrically neutral. Therefore, it is pertinent to study the gravitational collapse of a partially charged dusty plasma within the background of interstellar clouds.

On the other hand, dusty plasma is viewed as ‘the most abundant form of ordinary matter in the Universe’, and its linear and nonlinear physical phenomena have been widely discussed [914]. For example, a mathematical method used to solve some nonlinear physical phenomena in dusty plasma has been provided by Gao [15, 16]. The Jeans instability of dusty plasma was first researched by Pandy in 1994 [5]. After this, a series of works about the Jeans instabilities in dusty plasma have been widely investigated. The effect of electrostatic pressure on the Jeans instability of self-gravitating dusty cloud has been researched by Bezbaruah [17]. The Jeans instabilities in quantum dusty plasma on the basis of quantum effects has also been examined by Shukla et al [1821]. The effect of secondary electron emission on Jeans instability has been discussed by Sarkar et al [2224]. It has been found that secondary electron emission has a significant effect on the Jeans instability of the system. Meanwhile, they also further researched the effect of secondary electron emission on the Jeans instability in a complex plasma in the presence of nonthermal ions [8]. Similarly, Dwivedi, Sen and Bujarbarua studied the Jeans instability in dusty plasma in the background of a partially charged dusty plasma, and a meaningful phenomenon has been found in that a new mode of Jeans condensation, namely the pulsational mode of gravitational collapse (PMGC), may occur if a part of the dusty particles is ionized in the plasma environment [7]. However, they only considered the effect of the collision between uncharged dust and charged dust on the Jeans instability of dusty plasma, but ignored the effect of ion collision. As proposed by Gaurav and Avinash [6], the ion drag force significantly enhances the Jeans instability and the gravitational collapse of the dusty cloud. Therefore, in this paper, the effect of ion drag force aroused from ion–dust collision on the Jeans instability of partially charged dusty plasma in dark interstellar clouds has been examined in detail.

The remainder of this paper is organized as follows. Section 2 outlines the related work of the basic theories and the equations of our model. Based on the second part, using numerical methods and charts, these results are analyzed in section 3. A conclusion is given in section 4.

2. Partially charged dust model

A finite-sized charged dusty cloud embedded in a larger hydrogen plasma background composed of electrons and ions is considered. This larger-scale hydrogen plasma has a certain temperature, such as the HII region mentioned above, with 5000 K–10000 K. So far, some authors have shown that there are dust clouds in the $\mathrm{HII}$ region, from which dusty particles were charged in the context of such warm hydrogen plasma [3, 25, 26]. In the interstellar environment, there are various radiation mechanisms, secondary electron emission and other factors which will have a certain impact on the charge carried by the dusty surface. When very small dusty particles in cosmic plasma are exposed to ultraviolet radiation, electrons with high enough energy impact a single dusty particle and ionize dusty material, resulting in the generation of secondary electrons and the generation of a secondary electron current. Such a mechanism is equivalent to the flow of positive current to the dusty surface, which is a significant phenomenon in astrophysical plasmas [2732]. However, a dusty charging mechanism different from other models is discussed here, which is decided on for the following reasons: a) because the dust and plasma in these clouds may be not homogeneously mixed, a part of the dust is closer to some ionizing sources; b) some parts of the cloud may be more ionized, where a relatively large number of charged dusty particles are produced; c) there may be local (small scale) instabilities and fluctuations of the plasma. Then there will be some parts of the dust that are charged in the cloud [33]. In fact, besides considering the important role of the charged-dust to neutral-dust ratio $\eta (\equiv {n}_{\mathrm{dc}0}/{n}_{\mathrm{dn}0})$ in the formation of stars, the impact of ion resistance on the formation of stars should also be taken into consideration in this article. Two assumptions about this model are presented as follows. a) We assumed that all the dusty particles in the model are the same size. Under these conditions, it has the same charge on the charged dusty particles for a given plasma environment. b) For any physical phenomena on a dusty inertial timescale, the electrons could be assumed to follow the Boltzmann distribution:$ \begin{eqnarray}{n}_{{\rm{e}}}\approx {n}_{{\rm{e}}0}\exp \left(e\phi /{T}_{{\rm{e}}}\right).\end{eqnarray}$In our model, the effect of electrostatic force between dust and other particles cannot be ignored. For the electrostatic force to play an important role, it should be of the order of gravitational force(${{Gm}}_{{\rm{d}}}/{q}_{{\rm{d}}}^{2}\sim O(1)$) [5]. By simulating the above molecular cloud model and deducing the dispersion relation of the Jeans instability in dusty plasma, the effect of ion drag on the above PMGC mode is studied. The friction coupling between neutral dusty particles and charged dusty particles is taken into consideration, as well as the friction coupling between ion resistance and charged dust. To further investigate the influence of these two factors on the Jeans instability in dusty plasma, the friction term in neutral dust dynamics is ignored. Considering four groups of components (ions, electrons, neutral dust and charged dust), our model is constructed by the following equations:$ \begin{eqnarray}\displaystyle \frac{\partial {n}_{\mathrm{dn}}}{\partial t}+{\rm{\nabla }}\cdot \left({n}_{\mathrm{dn}}{{\boldsymbol{v}}}_{\mathrm{dn}}\right)=0,\end{eqnarray}$$ \begin{eqnarray}\displaystyle \frac{\partial {n}_{\mathrm{dc}}}{\partial t}+{\rm{\nabla }}\cdot \left({n}_{\mathrm{dc}}{{\boldsymbol{v}}}_{\mathrm{dc}}\right)=0,\end{eqnarray}$$ \begin{eqnarray}\displaystyle \frac{\partial {n}_{{\rm{i}}}}{\partial t}+{\rm{\nabla }}\cdot \left({n}_{{\rm{i}}}{{\boldsymbol{v}}}_{{\rm{i}}}\right)=0,\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{\partial {{\boldsymbol{v}}}_{\mathrm{dc}}}{\partial t}+({{\boldsymbol{v}}}_{\mathrm{dc}}\cdot {\rm{\nabla }}){{\boldsymbol{v}}}_{\mathrm{dc}}\\ =\,-\displaystyle \frac{{q}_{{\rm{d}}}}{{m}_{{\rm{d}}}}{\rm{\nabla }}\phi -{\rm{\nabla }}\varphi -{\nu }_{{\rm{i}}{\rm{d}}}\left({{\boldsymbol{v}}}_{\mathrm{dc}}-{{\boldsymbol{v}}}_{{\rm{i}}}\right)-{\nu }_{\mathrm{cn}}\left({{\boldsymbol{v}}}_{\mathrm{dc}}-{{\boldsymbol{v}}}_{\mathrm{dn}}\right),\end{array}\end{eqnarray}$$ \begin{eqnarray}\displaystyle \frac{\partial {{\boldsymbol{v}}}_{\mathrm{dn}}}{\partial t}+({{\boldsymbol{v}}}_{\mathrm{dn}}\cdot {\rm{\nabla }}){{\boldsymbol{v}}}_{\mathrm{dn}}=-{\rm{\nabla }}\varphi ,\end{eqnarray}$$ \begin{eqnarray}{{\rm{\nabla }}}^{2}\varphi =4\pi {{Gm}}_{{\rm{d}}}({n}_{\mathrm{dc}}+{n}_{\mathrm{dn}}),\end{eqnarray}$$ \begin{eqnarray}{{\rm{\nabla }}}^{2}\phi =4\pi e\left({n}_{{\rm{e}}}-{n}_{{\rm{i}}}-\displaystyle \frac{{q}_{{\rm{d}}}}{e}{n}_{\mathrm{dc}}\right),\end{eqnarray}$where ndn, ndc and ni represent number densities of neutral dust, charged dust and ions; ${v}_{{\rm{dn}}}$, ${v}_{{\rm{dc}}}$ and ${v}_{{\rm{i}}}$ are the velocities of neutral dust, charged dust and ions; md is the mass of dusty grain, G is the universal gravitational constant, φ is the gravitational potential, φ is the electrostatic potential, ${\nu }_{\mathrm{id}}$ is the collision frequency between ions and charged dust, and νcn is the binary collisional rate of momentum transfer from charged grains to neutral grains, respectively. The thermal term has been ignored here because we believed that the dust is cold.

Strictly speaking such dusty clouds are not homogeneous, which means this equilibrium cannot be regarded as homogeneous. However, to solve the actual problems, invoking the Jeans swindle, the zero order gravitational field is ignored and then the equilibrium can be viewed as homogeneous. Mathematically, the Poisson’s equation involved in the Jeans swindle is written as,$ \begin{eqnarray}{{\rm{\nabla }}}^{2}\varphi =4\pi {{Gm}}_{{\rm{d}}}\left({n}_{\mathrm{dc}}+{n}_{\mathrm{dn}}-{n}_{{\rm{d}}0}\right).\end{eqnarray}$In this equation, ${n}_{{\rm{d}}0}={n}_{\mathrm{dc}0}+{n}_{\mathrm{dn}0}$ models the Jeans swindle of the equilibrium gravitational force field [5]. In such uniform equilibrium, the velocities of three species and the electric field E are viewed as zero; meanwhile, the three species are distributed uniformly with constant densities. Along the standard procedure, the relevant physical variables can be expressed in the form of ${X}_{\alpha }={X}_{\alpha 0}+{X}_{\alpha 1}$, where ${X}_{\alpha 0}$ denotes its equilibrium status, and ${X}_{\alpha 1}$ denotes its perturbation (α=d, e, i for dust, electrons, ions, respectively). Substituting it in equations (2)–(9), and after Fourier analysis with the plane wave ansatz, i.e. ${X}_{\alpha 1}\propto \exp (-{\rm{i}}\omega t+{\rm{i}}{\boldsymbol{k}}\cdot {\boldsymbol{x}})$, we have:$ \begin{eqnarray}-{\rm{i}}\omega {n}_{\mathrm{dn}1}+{n}_{\mathrm{dn}0}{\rm{i}}{{kv}}_{\mathrm{dn}1}=0,\end{eqnarray}$$ \begin{eqnarray}-{\rm{i}}\omega {n}_{\mathrm{dc}1}+{n}_{\mathrm{dc}0}{\rm{i}}{{kv}}_{\mathrm{dc}1}=0,\end{eqnarray}$$ \begin{eqnarray}-{\rm{i}}\omega {n}_{{\rm{i}}1}+{n}_{{\rm{i}}0}{\rm{i}}{{kv}}_{{\rm{i}}1}=0,\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}-{\rm{i}}\omega {v}_{\mathrm{dc}1} & = & -\displaystyle \frac{{q}_{{\rm{d}}}}{{m}_{{\rm{d}}}}{\rm{i}}k{\phi }_{1}-{\rm{i}}k{\varphi }_{1}-{\nu }_{\mathrm{id}}\left({v}_{\mathrm{dc}1}-{v}_{{\rm{i}}1}\right)\\ & & -{\nu }_{\mathrm{cn}}\left({v}_{\mathrm{dc}1}-{v}_{\mathrm{dn}1}\right),\end{array}\end{eqnarray}$$ \begin{eqnarray}-{\rm{i}}\omega {v}_{\mathrm{dn}1}=-{\rm{i}}k{\varphi }_{1},\end{eqnarray}$$ \begin{eqnarray}-{k}^{2}{\varphi }_{1}=4\pi {{Gm}}_{{\rm{d}}}\left({n}_{\mathrm{dc}1}+{n}_{\mathrm{dn}1}\right),\end{eqnarray}$$ \begin{eqnarray}-{k}^{2}{\phi }_{1}=4\pi e\left({n}_{{\rm{e}}1}-{n}_{{\rm{i}}1}-\displaystyle \frac{{q}_{{\rm{d}}}}{e}{n}_{\mathrm{dc}1}\right).\end{eqnarray}$By a complicated but simple mathematical derivation, the dispersion relation for the dusty Jeans instability can be described in the following equation:$ \begin{eqnarray}\begin{array}{l}\left(1+{\rm{i}}\displaystyle \frac{{\nu }_{\mathrm{cn}}}{\omega }\right)\displaystyle \frac{{\omega }_{\mathrm{Jd}}^{2}}{{\omega }^{2}+{\omega }_{{\rm{J}}}^{2}-{\omega }_{\mathrm{Jd}}^{2}}+\left(1+{\rm{i}}\displaystyle \frac{{\nu }_{\mathrm{cn}}+{\nu }_{\mathrm{id}}}{\omega }\right)\\ \quad -\,\displaystyle \frac{{k}^{2}{C}_{\mathrm{scam}}^{2}}{{\omega }^{2}}-{\rm{i}}\displaystyle \frac{{{Zn}}_{\mathrm{dc}0}{\nu }_{\mathrm{id}}}{\omega {n}_{{\rm{i}}0}}=0,\end{array}\end{eqnarray}$where ${\omega }_{{\rm{J}}}=\sqrt{4\pi {{Gm}}_{{\rm{d}}}\left({n}_{\mathrm{dn}0}+{n}_{\mathrm{dc}0}\right)}$ and ${\omega }_{\mathrm{Jd}}=\sqrt{4\pi {{Gm}}_{{\rm{d}}}{n}_{\mathrm{dc}0}}$ are the corresponding Jeans frequencies, and ${C}_{\mathrm{scam}}^{2}=\tfrac{{q}_{{\rm{d}}}^{2}{n}_{\mathrm{dc}0}{T}_{{\rm{i}}}}{{e}^{2}{n}_{{\rm{i}}0}{m}_{{\rm{d}}}}$ is the dusty acoustic phase speed, $Z={q}_{{\rm{d}}}/e$. Introducing $K=k/{k}_{{\rm{J}}}$, ${\rm{\Omega }}=\omega /{\omega }_{{\rm{J}}}$, ${\eta }_{1}={n}_{\mathrm{dc}0}/{n}_{{\rm{i}}0}$, $\eta ={n}_{\mathrm{dc}0}/{n}_{\mathrm{dn}0}$, then equation (17) can be written in the following form$ \begin{eqnarray}\begin{array}{l}{{\rm{\Omega }}}^{4}+{\rm{i}}\left(\displaystyle \frac{{\nu }_{\mathrm{cn}}}{{\omega }_{{\rm{J}}}}+\displaystyle \frac{\left(1-Z{\eta }_{1}\right){\nu }_{\mathrm{id}}}{{\omega }_{{\rm{J}}}}\right){{\rm{\Omega }}}^{3}+\left(1-{K}^{2}\right){{\rm{\Omega }}}^{2}\\ +\,{\rm{i}}\left(\displaystyle \frac{{\nu }_{\mathrm{cn}}}{{\omega }_{{\rm{J}}}}+\displaystyle \frac{{\nu }_{\mathrm{id}}\left(1-Z{\eta }_{1}\right)}{{\omega }_{{\rm{J}}}}\displaystyle \frac{1}{1+\eta }\right){\rm{\Omega }}+{K}^{2}\left(\displaystyle \frac{1}{1+\eta }\right)=0,\end{array}\end{eqnarray}$where ${k}_{{\rm{J}}}\equiv {\omega }_{{\rm{J}}}/{C}_{\mathrm{scam}}$ is defined as the Jeans wave-number. It is obvious to see that when we ignored the terms ${n}_{\mathrm{dn}0}$ and ${\nu }_{\mathrm{id}}$, the above dispersion relationship is simplified to the case of the usual Jeans model ${\omega }^{2}={k}^{2}{C}_{{\rm{s}}}^{2}-{\omega }_{{\rm{J}}}^{2}$ [5]. On the other hand, when ${n}_{\mathrm{dc}0}\to 0$, one can obtain the usual Jeans mode proposed by Kolb [34]. In particular, the above dispersion relation reduces to the PMGC discussed by Dwivedi in the case of ${\nu }_{\mathrm{id}}\to 0$ [7]. In addition, since $Z{\eta }_{1}=\tfrac{{{Zn}}_{\mathrm{dc}0}}{{n}_{{\rm{i}}0}}\ll 1$, equation (18) can be reduced to the following form:$ \begin{eqnarray}\begin{array}{c}\begin{array}{l}{{\rm{\Omega }}}^{4}+{\rm{i}}\left(\displaystyle \frac{{\nu }_{{\rm{cn}}}+{\nu }_{{\rm{id}}}}{{\omega }_{{\rm{J}}}}\right){{\rm{\Omega }}}^{3}+\left(1-{\bar{K}}^{2}\right){{\rm{\Omega }}}^{2}\\ +\,{\rm{i}}\left(\displaystyle \frac{{\nu }_{{\rm{cn}}}}{{\omega }_{{\rm{J}}}}+\displaystyle \frac{{\nu }_{{\rm{id}}}}{{\omega }_{{\rm{J}}}}\displaystyle \frac{1}{1+\eta }\right){\rm{\Omega }}+{\bar{K}}^{2}\left(\displaystyle \frac{1}{1+\eta }\right)=0.\end{array}\end{array}\end{eqnarray}$

Since the aim of the present model is to discuss the effect of ion drag on the PMGC, the term νid shall be paid attention to in the following discussion. As shown in the following sections, the limit forms of the dispersion relation, which corresponds to two cases of the stability behavior of the above dusty mass distribution, are numerically calculated.

3. Numerical result analysis

For numerical calculation, we adopted some parameters given in the research of Avinash and Harpaz [35, 36]: $T=5000\,{\rm{K}}$, ${n}_{0}={n}_{{\rm{H}}}={10}^{-3}\,{{\rm{cm}}}^{-3}$, ${r}_{{\rm{d}}}\sim 3\times {10}^{-5}\,{\rm{cm}}$, with average dusty grain mass ${m}_{{\rm{d}}}\approx {10}^{-13}{\rm{g}}$. And the average dusty number density nd in these clouds is close to ${10}^{-6}\,{{\rm{cm}}}^{-3}$ [37, 38], ${q}_{{\rm{d}}}\approx 100e$, ${\omega }_{\mathrm{Jd}}\approx 3\times {10}^{-13}\,{{\rm{s}}}^{-1}$ and ${C}_{\mathrm{scam}}\approx 10\,{\rm{cm}}\,{{\rm{s}}}^{-1}$. As discussed by Nishi [39], the parameters $\eta ={n}_{\mathrm{dc}0}/{n}_{\mathrm{dn}0}$ can vary between ${10}^{-2}$ and 10−4. Thus we adopted it near 10−2 reasonably. The ion neutral collision frequency ${\nu }_{\mathrm{id}}\approx {10}^{-5}\,{{\rm{s}}}^{-1}$ [6] and the binary collisional rate of momentum transfer from charged grains to neutral grains can be estimated as ${\nu }_{\mathrm{cn}}\sim \pi {a}^{2}{n}_{\mathrm{dn}0}{v}_{\mathrm{td}}$ [7], where ${v}_{\mathrm{td}}$ ($=\sqrt{2{T}_{{\rm{d}}}/{m}_{{\rm{d}}}}$) represents the dusty thermal velocity. In fact, for this parameter νcn, two extreme limits in the background of cosmic radiation have been examined in this model. In the case of ${T}_{{\rm{d}}}\to 0$, using the above formula we can obtain ${\nu }_{\mathrm{cn}}\to 0$, which means the dusty mass distribution is frictionless. But in the other case of ${T}_{{\rm{d}}}\ne 0$, the charged dusty collision frequency ${\nu }_{\mathrm{cn}}\to \infty $, which means that the dust mass distribution is frictional.

Figure 1 shows the numerical results of equation (19), when ${\nu }_{\mathrm{cn}}\to 0$, ${\nu }_{\mathrm{id}}\to 0$. It can be found that as the ratio η increases, Ωr will decrease. Thus, the ratio of charged dusty particles to neutral dusty particles is important for the gravitational model. Physically, the gradual increase in η means an increase in the number of charged dusty particles, which leads to the exclusion of lighter electrons and the absorption of more heavy ions. Therefore, the heavy ions will absorb more electrons, which pronounces charge condensation and hence helps in gravitational collapse. As shown in the left part of figure 2, with the increase in η, the imaginary frequency Ωi gradually enhances, which means that dusty collapse will be more easily driven because the ratio η enhances the instability.

Figure 1.

New window|Download| PPT slide
Figure 1.The normalized real part of frequency ${{\rm{\Omega }}}_{{\rm{r}}}\equiv {\omega }_{{\rm{r}}}/{\omega }_{{\rm{J}}}$ versus the normalized wave-number $K\equiv k/{k}_{{\rm{J}}}$ with different η in the case of ${\nu }_{\mathrm{cn}}\to 0$, ${\nu }_{\mathrm{id}}\to 0$, where η=0.01, 0.02, 0.03 for the blue dashed line, green solid line and yellow dotted line, respectively.


Figure 2.

New window|Download| PPT slide
Figure 2.The normalized imaginary part of frequency ${{\rm{\Omega }}}_{{\rm{r}}}\equiv {\omega }_{{\rm{r}}}/{\omega }_{{\rm{J}}}$ versus the normalized wave-number $K\equiv k/{k}_{{\rm{J}}}$ with different η in the case of ${\nu }_{\mathrm{cn}}\to 0$, ${\nu }_{\mathrm{id}}\to 0$, where η=0.01, 0.02, 0.03 for the blue dashed line, green solid line and yellow dotted line, respectively.


In the case of ${\nu }_{\mathrm{cn}}\to \infty $, the effect of ion drag on the PMGC has been discussed in detail by the dispersion relation equation (17). As shown in figure 3, the black solid line represents the case of ${\nu }_{\mathrm{id}}=0$, which is consistent with the growth rate proposed by Dwivedi when ${\nu }_{\mathrm{cn}}\to \infty $. And it is also shown that with the increase in ${\nu }_{\mathrm{id}}$, the imaginary part of the frequency gradually rises, which means the ion drag force significantly enhances the instability. In other words, the ion drag enhances the instability of the pulsational mode, and it is conducive to the small amount of dust condensation in the dark interstellar clouds. Physically, it may have arisen as a result of mode competition. Contrary to both the thermal pressure and electromagnetic force, the condensation of dust is driven by the ion drag force and the self-gravity. The larger the ion drag force is, the more conducive to the condensation of small-scale dust, which is reflected by the collision frequency νid. Even when the ion drag force is strong enough to oppose other resistances, the arbitrary small amount of condensation of dust may occur. Therefore, a new mode of Jeans condensation, namely the PMGC, may exist in the dark interstellar clouds region and the ion drag force will act on this mode to help the small amount of condensation of dust, which may be one of the physical mechanisms for star formation.

Figure 3.

New window|Download| PPT slide
Figure 3.The normalized imaginary part of frequency ${{\rm{\Omega }}}_{{\rm{i}}}\equiv {\omega }_{{\rm{i}}}/{\omega }_{{\rm{J}}}$ versus the normalized wave-number $K\equiv k/{k}_{{\rm{J}}}$ with different ${\nu }_{\mathrm{id}}$ in the case of ${\nu }_{\mathrm{cn}}\to \infty $, where ${\nu }_{\mathrm{id}}=0,1.0000{{\rm{e}}}^{-5},1.0001{{\rm{e}}}^{-5},1.0002{{\rm{e}}}^{-5}$ for the black thick line, yellow dashed line, red dot-draw line and blue dotted line, respectively. The left ordinate corresponds to a special case of ${\nu }_{\mathrm{id}}=0$, while the other cases are mated with the right ordinate.


4. Conclusions

The effect of ion drag on the PMGC existing in a self-gravitating system which is composed of charged dust, neutral dust, ions and electrons has been analyzed in the present work. Adopting fluid dynamics, with continuity equations, momentum equations, Poisson’s equation and the Boltzmann distribution of ions and electrons, the dispersion relations for the PMGC are found and then by carrying out numeral calculations, with the dispersion diagrams, the following conclusions have been obtained:

(a) A new mode of Jeans condensation, namely the PMGC, exists in the dark interstellar clouds, as shown in figure 1 (the real part of the dispersion relation) and figure 2 (the imaginary part of the dispersion relation).

(b) With the increase in η, the imaginary frequency Ωi also gradually enhances, which indicates the ratio of η is conducive to enhancing the instability of the PMGC.

(c) As shown in figure 3, the effect of ion drag on the PMGC is significant. With the increasing collision frequency ${\nu }_{\mathrm{id}}$, the imaginary part of the frequency is gradually raised. This phenomena occurs because the ion drag force drives the condensation of dust, which may contribute to star formation.

To sum up, the effect of ion drag on the PMGC is investigated and we found a significant result in that the ion drag enhances the instability of the PMGC, which means it aids the small amount of dust condensation existing in the dark interstellar clouds. Therefore, the result of the present work provides a plausible authority for the star forming and growing mechanism. As mentioned earlier, nonlinear physical phenomena have always been a hot topic in plasma physics, astrophysics and even photoelectric communication [40]. Inspired by the nonlinear Schrödinger equation [4146], we will further research the nonlinear effects in dusty plasma systems based on those works.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11 763 006, 11847023 and 11 863 004).


Reference By original order
By published year
By cited within times
By Impact factor

Snell R L 1981 Astrophys. J. Suppl. Ser. 45 121
DOI:10.1086/190711 [Cited within: 1]

Myers P C Benson P J 1983 Astrophys. J. 266 309
DOI:10.1086/160780 [Cited within: 1]

Nakano T Hasegawa T Commun C N 1995 Astrophys. Space Sci. 224 523
DOI:10.1007/BF00667936 [Cited within: 2]

Wickramasinghe N C Hoyle F 1991 The Theory of Cosmic Grains Berlin Springer
[Cited within: 1]

Pandey B P Avinash K Dwivedi C B 1994 Phy. Rev E 49 5599
DOI:10.1103/PhysRevE.49.5599 [Cited within: 5]

Gaurav S Avinash K 2018 Phys. Plasmas 25 114503
DOI:10.1063/1.5058284 [Cited within: 3]

Dwivedi C B Sen A K Bujarbarua S 1999 Astron. Astrophys. 345 1049
[Cited within: 5]

Sarkar S Maity S Banerjee S 2011 Phys. Scr. 84 045501
DOI:10.1088/0031-8949/84/04/045501 [Cited within: 2]

Xu S Lazarian A 2020 Astrophys. J. 890 157
DOI:10.3847/1538-4357/ab6e63 [Cited within: 1]

Morfill G E Ivlev A 2009 Rev. Mod. Phys. 81 1353
DOI:10.1103/RevModPhys.81.1353

Shukla P K Eliasson B 2009 Rev. Mod. Phys. 81 25
DOI:10.1103/RevModPhys.81.25

Cattaert T Verheest F 2005 Astron. Astrophys. 438 23
DOI:10.1051/0004-6361:20052972

Adams F C Fatuzzo M 1993 Astrophys. J. 403 142
DOI:10.1086/172189

Burman S Chowdhury A R 2002 Chaos Soliton Fract. 13 973
DOI:10.1016/S0960-0779(01)00044-3 [Cited within: 1]

Gao X Y 2019 Appl. Math. Lett. 91 165
DOI:10.1016/j.aml.2018.11.020 [Cited within: 1]

Gao X Y Guo Y J Shan W R 2020 Appl. Math. Lett. 104 106170
DOI:10.1016/j.aml.2019.106170 [Cited within: 1]

Bezbaruah P Das P Borah P Das N 2018 Commun. Theor. Phys. 70 209
DOI:10.1088/0253-6102/70/2/209 [Cited within: 1]

Shukla P K Stenflo L 2006 Phys. Lett. A 355 378
DOI:10.1016/j.physleta.2006.02.054 [Cited within: 1]

Jung Y F 2001 Phys. Plasmas 8 3842
DOI:10.1063/1.1386430

Opher M Silva L O Danger D E Decyk V K Dawson J M 2001 Phys. Plasmas 8 2454
DOI:10.1063/1.1362533

Kremp D Bornath T Bonitz M Schlanges M 1999 Phys. Rev. E 60 4725
DOI:10.1103/PhysRevE.60.4725 [Cited within: 1]

Sarkar S Roy B Maity S Khan M Gupta M R 2007 Phys. Plasmas 14 042106
DOI:10.1063/1.2718926 [Cited within: 1]

Sarkar S Maity S Roy B Khan M 2010 Phys. Scr. 81 025504
DOI:10.1088/0031-8949/81/02/025504

Roy B Maity S Sarkar S Khan M 2008 Phys. Scr. T131 014046
DOI:10.1088/0031-8949/2008/T131/014046 [Cited within: 1]

Goertz C K Ip W H 1948 Geophys. Res. Lett. 11 349
DOI:10.1029/GL011i004p00349 [Cited within: 1]

Hazelton R C Yadlowsky E J 1994 IEEE Trans. Plasma Sci. 22 91
DOI:10.1109/27.279009 [Cited within: 1]

Chow W V Mendis D A Rosenberg M 1994 IEEE Trans. Plasma Sci. 22 179
DOI:10.1109/27.279021 [Cited within: 1]

Rosenberg M Mendis D A 1995 IEEE Trans. Plasma Sci. 23 177
DOI:10.1109/27.376584

Rosenberg M Mendis D A Sheehan D P 1999 IEEE Trans. Plasma Sci. 27 239
DOI:10.1109/27.763125

Brigol L A Hyde T W 1997 Adv. Space Res. 20 1539
DOI:10.1016/S0273-1177(97)00434-1

Walch B Horyani M Roberston S 1995 Phys. Rev. Lett. 75 838
DOI:10.1103/PhysRevLett.75.838

Horyani M Roberston S Walch B 1995 Geophys. Res. Lett. 22 2079
DOI:10.1029/95GL02287 [Cited within: 1]

Dwivedi C B Tiwari R S Sayal V K Sharma S R 1989 J. Plasma Phys. 41 219
DOI:10.1017/S0022377800013805 [Cited within: 1]

Kolb E W Turner M S 1990 The Early Universe Boulder Westview Press
[Cited within: 1]

Avinash K Shukla P K 2006 New J. Phys. 8 2
DOI:10.1088/1367-2630/8/1/002 [Cited within: 1]

Harpaz A 1993 Stellar Evolution 51Boca Raton, FL CRC Press1193
DOI:10.1201/9781439864678 [Cited within: 1]

Mann I Kimura H 2000 J. Geophys. Res. 105 10317
DOI:10.1029/1999JA900404 [Cited within: 1]

Sharma P Patidar A 2017 Phys. Plasmas 24 013705
DOI:10.1063/1.4972091 [Cited within: 1]

Nishi R Nakano T Umebayashi T 1991 Astrophys. J. 368 181
DOI:10.1086/169682 [Cited within: 1]

Zhang C R Tian B Qu Q X Liu L Tian H Y 2020 Z. Angew. Math. Phys. 71 18
DOI:10.1007/s00033-019-1225-9 [Cited within: 1]

Yin H M Tian B Zhao X C 2019 Appl. Math. Comput. 368 124768
DOI:10.1016/j.amc.2019.124768 [Cited within: 1]

Du Z Tian B Chai H P Zhao X H 2019 Appl. Math. Lett. 102 106110
DOI:10.1016/j.aml.2019.106110

Chen S S Tian B Sun Y Zhang C R 2019 Ann. Phys. 531 1900011
DOI:10.1002/andp.201900011

Du X X Tian B Yuan Y Q Du Z 2019 Ann. Phys. 531 1900198
DOI:10.1002/andp.201900198

Wang M Tian B Qu Q X Du X X Zhang C R Zhang Z 2019 Eur. Phys. J. Plus. 134 578
DOI:10.1140/epjp/i2019-12909-2

Hu C C Tian B Yin H M Zhang C R Zhang Z 2019 Comput. Math. Appl. 78 166
DOI:10.1016/j.camwa.2019.02.026 [Cited within: 1]

相关话题/Effect pulsational gravitational