删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Fifth-Order Alice-Bob Systems and Their Abundant Periodic and Solitary Wave Solutions*

本站小编 Free考研考试/2022-01-02

Qi-Liang Zhao1, Man Jia1, Sen-Yue Lou,1,2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

Corresponding authors: E-mail:lousenyue@nbu.edu.cn

Received:2019-06-8Online:2019-10-9
Fund supported:Sponsored by the National Natural Science Foundations of China under Grant .No. 11435005
K. C. Wong Magna Fund in Ningbo University


Abstract
The study on the nonlocal systems is one of the hot topics in nonlinear science. In this paper, the well-known fifth-order integrable systems including the Sawada-Kotera (SK) equation, the Kaup-Kupershmidt (KK) equation and the fifth-order Koterweg-de Vrise (FOKdV) equation are extended to a generalized two-place nonlocal form, the generalised fifth-order Alice-Bob system. The Lax integrability of two sets of Alice-Bob systems for all the SK, KK and FOKdV type systems are explicitly given via matrix Lax pairs. The $\hat{P}\hat{T}$ symmetry breaking and symmetry invariant periodic and solitary waves for one set of nonlocal SK, KK and FOKdV system are investigated via a special travelling wave solution ansatz.
Keywords: Alice-Bob SK equarions;Alice-Bob KK equations;periodic and solitary waves


PDF (108KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Qi-Liang Zhao, Man Jia, Sen-Yue Lou. Fifth-Order Alice-Bob Systems and Their Abundant Periodic and Solitary Wave Solutions*. [J], 2019, 71(10): 1149-1154 doi:10.1088/0253-6102/71/10/1149

1 Introduction

The nonlinear Schr?dinger (NLS) equation has been successfully extended to some nonlocal forms because of the work of Ablowitz and Musslimani in 2013.[1] The possible applications of nonlocal systems for two-place physics (Alice-Bob physics) was proposed by one of the authors (Lou).[2]

In Ref. [1], the nonlocal NLS system is written as

$$ i A_{t}+A_{xx}\pm A^2B=0\,,\ \\B=\hat{f}A=\hat{P}\hat{C}A=A^*(-x,t),$$
where the operators $\hat{P}$ and $\hat{C}$ are the parity transformation and the charge conjugation, respectively. By using the discrete symmetry group, the $\hat{P}\hat{T}\hat{C}$ symmetry group ${\cal{G}}$, generated by the generators $\hat{P}, \hat{C}$ and the time reversal $\hat{T}$, it can be readily found that various nonlinear systems can be extended to many nonlocal forms.[2-9] The $\hat{P}\hat{T}\hat{C}$ symmetry group ${\cal{G}}$ is a very important group in various physical fields such as the quantum chromodynamics.[10] electric circuits,[11] optics,[12-13] Bose-Einstein condensations,[14] atmospheric and oceanic dynamics[5] and etc.

In this paper, we focus on the possible nonlocal extensions on the well known fifth-order nonlinear systems such as the Sawada-Kotera (SK) equation, the Kaup-Kupershmidt (KK) equation and the fifth-order Koteweg de-Vrise (FOKdV) equation. In Sec. 2, we directly write down a fifth-order Alice-Bob (AB) system by means of the parity and time reversal symmetries. In Sec. 3, we select out some integrable fifth-order AB systems from the general AB system of Sec. 2 by fixing model parameters. In Sec. 4, the abundant $\hat{P}\hat{T}$ symmetry breaking and $\hat{P}\hat{T}$ invariant periodic and soliton solutions are studied for integrable fifth-order AB systems. The last section is devoted to do some short summary and discussion.

2 Fifth-Order Alice-Bob Systems

The generalized homogeneous fifth-order nonlinear system possesses the form[15]

$$ u_t+au^2u_x+bu_xu_{xx}+cuu_{xxx}+u_{xxxxx}=0\,,$$
which is a generalization of the well known SK equation ($a=b=c=5$),

$$ u_t+5u^2u_x+5uu_{xxx}+5u_xu_{xx}+u_{xxxxx}=0\,,$$
the KK equation ($a=20, b=25, c=10$),

$$u_t+20u^2u_x+10uu_{xxx}+25u_xu_{xx} +u_{xxxxx}=0\,, $$
and the FOKdV equation ($a=30, b=20, c=10$),

$$ u_t+30u^2u_x+10uu_{xxx}+20u_xu_{xx}+u_{xxxxx}=0\,.$$
The possible physical applications of the generalized fifth-order nonlinear system (2) can be found in many natural scientific fields such as the ocean gravity waves (surface and internal waves),[16] plasma waves,[17] electromagnetic waves[18] and so on.

The fifth-order nonlinear system (2) can be extended to a nonlocal two-place form

$$ A_t=(a_1A_{xx}+a_2B_{xx}+a_3A^2+a_4AB+a_5B^2)A_x +(b_1A_{xx}+b_2B_{xx}+b_3A^2+b_4AB +b_5B^2)B_x +(a_6A+a_7B)A_{xxx}+(b_6A+b_7B)B_{xxx} +a_0A_{xxxxx}+b_0B_{xxxxx}=0\,,$$
$$ B=\hat{f}A=A^{\hat{f}}\,,\quad \hat{f}=\hat{P}\hat{T}\,,$$
where $\hat{P}$ and $\hat{T}$ are parity and time reversal operators defined by

$$ A^{\hat{P}}=\hat{P}A(x,t)=A(-x,t),\quad A^{\hat{T}}=A(x,-t)\,.$$ For $B=A^{\hat{f}}=A$, the model (6) is equivalent to the local system (2).

To solve a nonlocal system, one of the simplest methods is the symmetric-antisymmetric separation approach with respect to the operator $\hat{f}$. For the operator $\hat{f}$ with $\hat{f}^2=1$, any function $A$ can be separated to symmetry part $u$ and antisymmetry part $v$,

$$ A=\frac12(A+A^{\hat{f}})+\frac12(A-A^{\hat{f}})\equiv u+v\,.$$
Because of the property (8), the nonlocal system (6) can also be separated to symmetric part ($u_{3x}\equiv u_{xxx}, u_{5x}\equiv u_{xxxxx}, v_{3x}\equiv v_{xxx}, v_{5x}\equiv v_{xxxxx}$),

$$ u_t=\alpha_0^+u_{5x} +\alpha_1^+u_xu_{xx}+\alpha_1^-v_xv_{xx} +(\alpha_2^+u^2+\alpha_2^-v^2)u_x +\alpha_3^+uu_{3x}+\alpha_3^-vv_{3x}+2\alpha_4^+uvv_x\,,$$
and antisymmetric part,

$$ v_t=\alpha^-_0v_{5x} +\beta_1^+v_xu_{xx}+\beta_1^-u_xv_{xx} +(\beta_2^+u^2+\beta_2^-v^2)v_x +\beta_3^+vu_{3x}+\beta_3^-uv_{3x}+2\alpha_4^-vuu_x $$
with the constant relations

$$ \alpha_0^{\pm} = a_0\pm b_0\,, \quad \alpha_1^{\pm} = a_1\pm a_2\pm b_1+b_2\,, $$ $$\alpha_2^{\pm}= a_3\pm a_4+a_5+b_3\pm b_4+b_5\,,$$ $$\alpha_3^{\pm}= a_6\pm a_7\pm b_6+b_7\,,$$ $$\alpha_4^{\pm}= a_3\mp b_3-a_5\pm b_5\,,$$ $$\beta_1^{\pm} = a_1\pm a_2\mp b_1-b_2\,,$$ $$\beta_2^{\pm} = a_3\pm a_4+a_5-b_3\mp b_4-b_5\,, $$ $$ \beta_3^+ = a_6\mp a_7\pm b_6-b_7\,.$$

Thus, to solve the nonlocal system (6) is equivalent to solve the local coupled system (9) and (10) with the invariant conditions

$$ u^{\hat{f}}=u\,,\quad v^{\hat{f}}=-v\,.$$
In other words, the nonlocal equation (6) is an $\hat{f}$-symmetry reduction of the coupled local system (9) and (10).

3 Integrable Fifth-Order Nonlocal Systems

Because the nonlocal system (6) is only a symmetry reduction of Eqs. (9) and (10), Eq. (6) is integrable if the coupled system (9) and (10) is integrable. Thus, in this section, we list some special Lax integrable cases of Eq. (6).

3.1 Lax Integrable ABSK Systems

It is known that the local SK system (3) possesses the scalar Lax pair[19]

$$ \psi_{3x}=-u\psi_x+\lambda\psi\, \\ \psi_t=9\psi_{5x}+15(u\psi_{xx})_x+5(u^2+2u_{xx})\psi_x\,.$$
Now if we extend the scalar Lax pair (12) to matrix Lax pairs, we can find some types of nonlocal ABSK systems. Here, we write down two special forms. The first Lax integrable ABSK system can be obtained from Eq. (12) by taking the transformation

$$ \left( \begin{matrix} \psi_1 \\ \psi_2 \end{matrix} \right),\quad u\longrightarrow U = \left( \begin{matrix} A+A^{\hat{f}} \ \ A^{\hat{f}}-A \\ A-A^{\hat{f}} \ \ A+A^{\hat{f}} \end{matrix} \right) \lambda \longrightarrow \Lambda= \left( \begin{matrix} \lambda_1 \ \ -\lambda_2 \\ \lambda_2 \ \ \lambda_1 \end{matrix} \right) $$
The integrable ABSK related to the Lax pair (12) with (13) possesses the form ($B=A^{\hat{f}}=A(-x,-t), u=A+B, v=A-B$)

$$ A_t+5[(4AB+u_{xx})A_x +(2uv+v_{xx})B_x +uA_{3x}+vB_{3x}]+A_{5x}=0\,.$$
The second Lax integrable ABSK system can be obtained from Eq. (12) by taking the transformation

$$ \psi\longrightarrow \left( \begin{matrix} \psi_1 \\ \ \ \psi_2 \end{matrix} \right),\quad u\longrightarrow U=\left( \begin{matrix} A+A^{\hat{f}} \ \ 0 \\ A-A^{\hat{f}} \ \ A+A^{\hat{f}} \end{matrix} \right), \lambda \longrightarrow \Lambda= \left( \begin{matrix} \lambda_1 \ \ 0 \\ \lambda_2 \ \ \lambda_1 \end{matrix} \right) $$
The integrable ABSK related to the Lax pair (12) with (14) possesses the form ($B=A^{\hat{f}}=A(-x,-t), u=A+B, v=A-B$)

$$ A_t+\frac52\big[(4AA_x+2vB_x+A_{3x})u+u_{xx}A_x +v_{xx}B_x +2(AA_{xx})_x+vB_{3x}\big]+A_{5x}=0\,. $$

3.2 Lax Integrable ABKK Systems

For the local KK system (4), the Lax pair possesses the form

$$ \psi_{xxx}= -2u\psi_x+(-u_x+\lambda)\psi\,, \psi_t= 9\psi_{5x}+35u_{xx}\psi_x+45u_x\psi_{xx} +30u\psi_{3x} \hphantom{\psi_t=} +10(u^2+u_{xx})_x\psi+20u^2\psi_x\,. $$
Similar to the nonlocal SK cases, some types of the Lax integrable nonlocal ABKK systems can be obtained from transform the scalar Lax pair (17) to matrix Lax pair. For instance, the integrable ABKK system ($B=A^{PT}=A(-x,-t), u=A+B, v=A-B$)

$$ A_t+5\big[(16AB+5u_{xx})A_x+(8uv+5v_{xx})B_x \quad +2uA_{3x}+2vB_{3x}\big]+A_{5x} = 0 $$
possesses Lax pair (17) with (13).

In the same way, (17) wirh (15) is a Lax pair of the following Lax integrable ABKK equation,

$$ A_t+\frac52\big[(16 A u+10 A_{xx}+5 u_{xx}) A_x +(8uv+5v_{xx})B_x \quad +2 u A_{3x}+4AA_{3x}+2vB_{3x}\big]+A_{5x} = 0\,, $$
where $B=A^{PT}=A(-x,-t), u=A+B, v=A-B$.

3.3 Lax Integrable Fifth-Order ABFOKdV Systems

The Lax pair of the FOKdV equation (5) possesses the form

$$ \psi_{xx}+(u-\lambda)\psi=0\,, \psi_t+16\psi_{5x}+60 u_x\psi_{xx}+40u\psi_{3x} +15(u^2+u_{xx})_x\psi \quad +10(3u^2+5u_{xx})\psi_x=0\,. $$
If we change the Lax pair (2) to a matrix form via (20), we can obtain an ABFOKdV system

$$ A_t+10\big[2(6AB+u_{xx})A_x+2(3uv+v_{xx})B_x \quad +u A_{3x}+v B_{3x}\big]+A_{5x} = 0\,.$$
From the Lax pair (20) with (15), we can find another ABFOKdV equation

$$ A_t+5\big[2(6Au+2A_{xx}+u_{xx})A_x+2(3uv+v_{xx})B_x \quad +(2A+u)A_{3x}+vB_{3x}\big]+A_{5x} = 0\,. $$

3.4 Integrable Fifth-Order Systems Related to Linear Couplings

From the equations (9) and 910), it is straightforward to find that when

$$ \alpha_1^-=\alpha_2^-=\alpha_3^-=\alpha_4^+=\beta_2^-=0\,, \alpha_2^+=a\,, \ \ \alpha_1^+=b\,, \ \ \alpha_3^+=c\,, $$
i.e.,

$$ a_2=\frac12b-b_1\,, a_4= a_3-b_3+\frac14a\,, a_5=\frac14a -b_3\,, a_7=\frac12c -b_6\,, b_0=1 -a_0\,, b_2=\frac12b -a_1\,, b_4= b_3-a_3+\frac14a\,, b_5=\frac14a -a_3\,, b_7=\frac12c -a_6\,,$$

one can find three integrable cases which can be uniformly written as

$$ A_t+a_0v_{5x}+\frac{a}4Buu_x+\frac12\big[cBu_{3x} +bB_{xx}u_x \quad +a_3u(uv)_x+a_1(u_xv_x)_x\big] +b_3u(AB_x-BA_x) \quad +b_1(A_{xx}B_x-A_xB_{xx}) +a_6(AA_{3x}-BB_{3x}) +b_6(AB_{x3}-BA_{x3})+B_{5x}=0\,. $$
Equation (24) may be integrable if the constants $\{a, b, c\}$ are fixed as same as those of Eqs. (3), (4), and (5) while other constants $a_0, a_1, b_1, a_3, b_3, a_6$ and $b_6$ are remained free.

More especially, by appropriately taking the arbitrary constants in Eq. (24), we have

$$ A_t+\big[A_{4x}-\frac{a}3u^2 (u-3 A)-\frac{b}4u_x (u_x-4A_x)\big]_x +\frac{c}2(2uA_{3x}+vu_{3x})=0\,, $$
which includes three special cases (16), (19), and (22) when the constants $a, b$ and $c$ are fixed as the same as in Eqs. (16), (19), and (22).

4 Abundant Periodic and Solitary Waves of Fifth-Order Nonlocal Systems

In this section, we focus our attention on the periodic and solitary waves for the significantly integrable systems, the ABSK system (16), the ABKK system (19) and the ABFOKdV system (22). To find the periodic waves and solitary waves of the systems (16), (19), and (22),one can uniformly treat them for Eq. (25) in the special traveling wave ansatz

$$ A=\mu_3{\rm sn}^3(\xi, m)+\mu_2{\rm sn}^2(\xi, m)+\mu_1{\rm sn}(\xi, m)+\mu_0 +{\rm cn}(\xi, m){\rm dn}(\xi, m)\big[2\mu_5{\rm sn}(\xi, m)+\mu_4\big]\,, $$
where $\xi=kx+\omega t$, $k, \omega, m, \mu_i, i=0, 1, \ldots, 5$ are arbitrary constants and ${\rm sn}(\xi, m), {\rm cn}(\xi, m)$ and ${\rm dn}(\xi, m)$ are Jacobi elliptic functions with modulus $m$.

Substituting the solution ansatz to the model equation and vanishing all the coefficients of the elliptic Jacobi functions, we get sixteen relations among the solution parameters $\{k, \omega, m, \mu_i, i=0, 1, \ldots, 5\}$ and the model parameters $\{a, b, c\}$,

$$ 3 m^2 (b_1 k^2 m^2+a \mu_2) \mu_4^2+\mu_2 (90 k^4 m^4+3 b_1 k^2 m^2 \mu_2+a \mu_2^2)=0\,, \\ a m^2 \mu_4^2+3 (30 k^4 m^4+2 b_1 k^2 m^2 \mu_2+a \mu_2^2)=0\,, \\ (45k^4m^4+3b_1k^2m^2\mu_2+2a\mu_2^2)(3b_1 k^2m^2+2a\mu_2)=0\,, \\ (2m^2\mu_4\mu_5-\mu_2\mu_3)(3b_1k^2m^2+2a\mu_2)=0\,, \\ m_1[2 k^2 (c-b_1)\mu_2^2+(-60 k^4 m^2-2 a\mu_4^2)\mu_2 -k^2 m^2 \mu_4^2 (2 b_1+c)] +\mu_0(6 c k^2 m^2\mu_2+2 a m^2\mu_4^2+2 a\mu_2^2)=0\,, \\ [(108 a \mu_2^2+8 k^2 m^2 (19 b+43 c) \mu_2+600 k^4 m^4) \mu_5 -24 a \mu_2 \mu_3 \mu_4-k^2 m^2 \mu_3 \mu_4 (51 b+107 c)] m_1 \\ \quad +40 m^2 \mu_0\mu_5(3 c k^2 m^2+a \mu_2) +10 m^2\mu_1\mu_4[2 a \mu_2+ k^2 m^2 (b+3 c)] +20 a m^2 \mu_0 \mu_3 \mu_4=0\,, \\ m_1\{6 (a \mu_2^2-4 k^4 m^4 )\mu_3-2 m^2\mu_4 \mu_5 [k^2 m^2 (7 b+16 c)+4a \mu_2]+k^2 \mu_2 \mu_3 (6 b+17 c) m^2\} \\ \quad+8 a m^4 \mu_0 \mu_4 \mu_5-168 m^6 k^4 \mu_1-2 k^2 m^4 [(5 b +9 c) \mu_1 \mu_2-6 c \mu_0 \mu_3] +4 a \mu_2 (\mu_0 \mu_3-\mu_1 \mu_2) m^2=0\,, \\ \{2 c k^3 \mu_0 m_1^2+[4 k^3 (b_1+2 c) \mu_2+120 k^5 m^2+\omega_1] m_1 -[16 a k \mu_2+2 c k^3 (m^4+14 m^2+1)] \mu_0\} \mu_4=0\,, \\ \{2 a k (m^4+4 m^2+1) \mu_4^2-4k\mu_0 m_1(5 c k^2 m^2+3 a \mu_2)+4 a k m^2 \mu_0^2+k^3 [3(m^4+1)(2b+3c)\\ \quad +2m^2(14b+27c)] \mu_2+8 a k \mu_2^2+m^2 (91 k^5 m^4+434 k^5 m^2+91 k^5+\omega)\} \mu_4=0\,, \\ (2 \mu_2 \mu_5-\mu_3 \mu_4) (3 b_1 k^2 m^2+2 a \mu_2)=0\,, \\ \{[14 k^2 m^2 (15 k^2 m^2+b_1 \mu_2)-2 c k^2 m^2 \mu_2+3 a m^2 \mu_4^2+5 a \mu_2^2] m_1 -4 m^2 \mu_0 (3 c k^2 m^2+2 a \mu_2)\} \mu_4=0\,, \\ (30 k^5 m^4+180 k^5 m^2-12 c k^3 m_1 \mu_0+30 k^5+2 \omega_1) \mu_5+2 \mu_4 k (-b_1 k^2 m_1 \mu_1+c k^2 m_1 \mu_1 +6 c k^2 \mu_3+4 a \mu_0 \mu_1)=0\,, \\ \omega_1 \mu_1+4 k (-15 k^4 m^2 \mu_3-b_1 k^2 m_1 \mu_4 \mu_5-2 c k^2 m_1 \mu_4 \mu_5+3 c k^2 \mu_0 \mu_3 -15 k^4 \mu_3+4 a \mu_0 \mu_4 \mu_5)=0\,, \\ \omega_1=\omega+k^5 m^4+14 k^5 m^2-2 c k^3 m_1 \mu_0+4 b_1 k^3 \mu_2-8 c k^3 \mu_2+k^5+4 a k \mu_0^2+4 a k \mu_4^2\,, \\ (30 k^5 m^4+180 k^5 m^2-12 c k^3 m_1 \mu_0+30 k^5+2 \omega_1) \mu_2-2 k \mu_4^2 (-b_1 k^2 m^4+c k^2 m^4\\ \quad -2 b_1 k^2 m^2-10 c k^2 m^2+4 a m_1 \mu_0-b_1 k^2+c k^2)=0\,, \\ (240 k^5 m^4+1200 k^5 m^2-48 c k^3 m_1 \mu_0+24 b_1 k^3 \mu_2-36 c k^3 \mu_2+240 k^5+3 \omega_1) \mu_3\\ \quad -12 k \mu_4 [(c-2 b_1) k^2 m^4-6 b_1 k^2 m^2-10 c k^2 m^2+4 a m_1 \mu_0-2 b_1 k^2+c k^2-4 a \mu_2] \mu_5 \\ \quad -6 k \mu_1 (10 k^4 m^2 m_1-2 c k^2 m^2 \mu_0+2 b_1 k^2 m_1 \mu_2-c k^2 m_1 \mu_2+2 a m_1 \mu_4^2-4 a \mu_0 \mu_2)=0\,, \\ \{[48 a k \mu_2+16 c k^3 (2 m^4+13 m^2+2)] \mu_0-8 a k m_1(2 \mu_0^2-5 \mu_4^2)-16 k^3 m_1 (4 b_1-5 c) \mu_2 \\ \quad -4 m_1 (16 k^5 m^4+464 k^5 m^2+16 k^5+\omega)\} \mu_5+[(24 a k \mu_0-6 k^3 m_1 (3 b_1+5 c)) \mu_3 \\ \quad -16 a k m_1 \mu_1 \mu_0+24 a k \mu_1 \mu_2+4 k^3 \mu_1 (b_1 m^4-c m^4+5 b_1 m^2+c m^2+b_1-c)] \mu_4=0\,, \\ \{8 a k (6 m^4+17 m^2+6) \mu_2^2+[32 a k m^2 m_1 \mu_0+4 k^3 m^2 (16 b_1 m^4+8 c m^4+47 b_1 m^2+16 c m^2 \\ \quad +16 b_1+8 c)] \mu_2+114 c k^3 m^4 m_1 \mu_0+3 m^4 (145 k^5 m^4+230 k^5 m^2+145 k^5-\omega_1)\} \mu_5 \\ \quad +\{[4 a k m^2 (4m_1 \mu_0-5 \mu_2)-2 k^3 m^2 (6 b_1 m^4+2 c m^4+27 b_1 m^2+13 c m^2+6 b_1+2 c)] \mu_3 \\ \quad +16 a k m^2 m_1 \mu_1 \mu_2-[12 a k m^4 \mu_0-k^3 m^4 m_1 (11 b_1+5 c)] \mu_1\} \mu_4=0\,.$$

There are many special solutions for the above nonlinear algebraic solutions. In the following three special subsections, we list the final periodic solutions according to the special solutions of the above parameter constraints for the ABSK equation (16) ($a=b=c=5$), the ABKK equation (19) ($a=20, b=25, c=10$) and the ABFOKdV equation (22) ($a=30, b=20, c=10$).

4.1 Periodic and Solitary Waves of the Integrable ABSK System (16)

For the ABSK system (16), there are five independent periodic solutions, $A=A_{i}, i=1,2, \ldots,\ 5$ with notations $S\equiv {\rm sn}(\xi,\ m), C\equiv {\rm cn}(\xi,\ m), D\equiv{\rm dn}(\xi, m)$ and $ \xi\equiv kx+\omega t+\xi_0$ and arbitrary constants $k, m, \mu, \nu$ and $\xi_0$,

$$ A_1=-3 k^2 m^2 S^2+2\mu CDS+\frac{\nu k^2}2\,, \omega =k^5[20 (1+m^2) \nu -5 \nu^2-4 (4 m^4+11 m^2+4)]\,, $$
$$ A_2 =-6 k^2 m^2 S^2+2 \mu CDS+2 k^2 m_1\,, \omega = -16 k^5 (m^4-m^2+1)\,,\quad m_1=1+m^2\,, $$
$$ A_3 = \frac{m}2(4\mu S-3k^2)(m S^2-CD)-\mu m_1 S +\frac{\nu k^2}2\,, \omega = k^5 (5 m_1 \nu-5 \nu^2-m_1^2+3 m^2)\,, $$
$$ A_4 = m(2 \mu S-3 k^2) (m S^2+ C D)+\frac{m^2+1}2 (k^2-2\mu S)\,, \omega = -k^5 (m^4+14 m^2+1)\,, $$
$$ A_5 = 2\mu CDS+m^2(2\nu S-3 k^2)S^2 +\frac{m^2+1}2(k^2 - 2\nu S)\,,\omega = -k^5(m^4+14m^2+1)\,.$$
From the solutions (27)--(31) we know that all $A_i,\ i=1,\ \ldots,\ 5,$ are generally the $\hat{P}\hat{T}$ symmetry breaking periodic wave solutions while $A_i(\mu=0),\ i=1,\ 2,\ 3,\ 4$ and $A_5(\mu=0,\ \nu=0)$ are related to the $\hat{P}\hat{T}$ invariant periodic waves.

It is clear that all the periodic waves $A_i, i=1, \ldots, 5$, will be reduced to the solitary waves or the vacuum (constant) solutions. Two independent solitary wave solutions, $A_{s_1} $ and $A_{s_2}$, possess the following forms after using the redefinitions of constants,

$$ A_{s_1}=\frac{\nu k^2}2+3k^2{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,,\omega=-k^5(16+20\nu+5\nu^2)\,, $$
$$ A_{s_2}\!=\!-2k^2\!+6k^2{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,,\ \ \omega\!=\!-16k^2\,.$$
The solitary wave solution (32) may have zero boundary condition by taking $\nu=0$ at $\xi=\pm\infty$, however, the solitary wave solution (33) possesses always nonzero boundary at $\xi=\pm\infty$ and the nonzero boundary is dependent on wave number $k$.

4.2 Periodic and Solitary Waves of the Integrable Nonlocal ABKK System(19)

For the ABKK system (19), there exist four independent $\hat{P}\hat{T}$ symmetry breaking periodic wave solutions,

$$ A_1 = m(2 \mu S-3 k^2) (m S^2- C D)+\frac{m^2+1}2 (k^2-2\mu S)\,,\quad \omega = -11 k^5 (m^4+14 m^2+1)\,,$$
$$ A_2 = \frac{m}8 (16 \mu S-3 k^2)(mS^2 - CD)+\frac{m^2+1}{16} (k^2-16\mu S)\,,\quad \omega = -\frac{k^5}{16} (m^4+14 m^2+1)\,,$$
$$ A_3 = \mu CDS-6 k^2 m^2 S^2+2 k^2 (m^2+1)\,,\quad \omega = -176 k^5 (m^4-m^2+1)\,,$$
$$ A_4 = \nu CDS+m^2 \mu S^3-\frac34k^2m^2S^2+\frac{m^2+1}4(k^2-2\mu S)\,,\quad \omega = -k^5 (m^4-m^2+1)\,.$$
In some special cases, $\mu=0$ for Eqs. (34), (35), (36), and and $\mu=\nu=0$ for Eq. (37),

the periodic waves become $\hat{P}\hat{T}$ invariant waves.

When the modulus $m$ of the Jacobi elliptic functions are taken as $\pm 1$, all the periodic waves (34), (35), (36), and (37) are reduced to solitary wave solutions or the constant vacuum solutions.

Two independent solitary wave solution possess the forms,

$$ A_{k_1}=-2 k^2+6k^2{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,,\quad \omega=-176k^5\,,$$
$$ A_{k_2}=-\frac{k^2}4+\frac{3k^2}4{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,,\quad \omega=-k^5\,.$$
It should be mentioned that both the solution (38) and (39) do not have the zero boundary at $\pm \infty$. The nonzero boundaries are $k$-dependent.

4.3 Periodic and Solitary Waves of the Nonlocal Integrable ABFOKdV System(22)

For the ABFOKdV system (22), the independent five $\hat{P}\hat{T}$ symmetry breaking periodic wave solutions possess the forms for nonzero $\mu$,

$$ A_1 = 2 \mu CDS-3 k^2 m^2 S^2+k^2 m_1\,,\quad \omega = -56 k^5 (m^4-m^2+1),\ m_1\equiv 1+m^2\,,$$
$$ A_2 =S_n (2\mu CD-k^2 m^2 S)+\frac{\nu}2 k^2\,, \quad \omega =k^5[40 m_1 \nu -30 \nu^2-8(2 m^4+3 m^2+2)]\,,$$
$$ A_3 = \frac{m}2 (4 \mu S- k^2)(m S^2- CD)-\mu m_1 S +\frac{\nu k^2}2\,, \quad \omega =k^5 [10 \nu m_1-(m^4+4m^2+1)-30 \nu^2]\,, $$
$$ A_4=(\mu S-2 k^2) m^2 S^2+mCD(2\mu S-k^2)+\frac{m_1}2(k^2-\mu S)\,,\quad \omega = -7 k^5 (3 m^4+2 m^2+3)\,,$$
$$ A_5 = \frac{m}2 (m S^2-CD)(4 \mu S-3 k^2)-\mu m_1 S+\frac14 k^2 m_1 \,, \quad \omega = -\frac72 k^5 (m^4+14 m^2+1)$$
with arbitrary constants $k, m, \mu$ and $\nu$.

When the constants $\mu$ in the periodic wave solutions are fixed as $\mu=0$, all the $\hat{P}\hat{T}$ symmetry breaking periodic waves (40)--(44) become $\hat{P}\hat{T}$ invariant periodic wave solutions. When the modular $m=1$, we get two independent soliton solutions ($\xi=kx+\omega t$),

$$ A_{v_1}=\nu k^2+k^2{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,, \omega=-8k^5(15\nu^2+10\nu+2)\,, $$
$$ A_{v_2}=-k^2+3k^2{\rm sech}^2(\xi)[1+\mu \tanh(\xi)]\,,\omega=-56k^5\,. $$
It is clear that the soliton solution (45) may have zero boundary conditions at $\xi\rightarrow \pm \infty$ by taking $\nu$ while the second soliton solution (46) always possesses the wave number $k$ dependent boundary condition.

5 Summary And Discussions

In this paper, we focus on the Alice-Bob nonlocal fifth-order integrable and nonintegrable systems. By using the well known parity and time reversal symmetries, a quite general two-place nonlocal fifth-order system (6). Especially, the nonlocal fifth-order system (6) including at least two types of Lax integrable ABSK systems, two types of Lax integrable ABKK systems and two types of Lax integrable ABFOKdV systems.

By studying the travelling wave solutions for one type of nonlocal SK, KK and fifth-order KdV systems, one can find that there are abundant $\hat{P}\hat{T}\hat{C}$ symmetry breaking and symmetry invariant periodic waves which includes two types of solitary waves for all three models.

Apart from the periodic waves and soliton solutions, many kinds of nonlinear excitations (such as the multiple solitons, breathers and rogue waves) for various nonlocal systems (nonlocal NLS, MKdV, KdV, KP and DS systems) have been obtained by a number of researchers.[1-9,20-27]

The more about these kinds of solutions on the the fifth-order integrable nonlocal Alice-Bob systems should be further studied.

Reference By original order
By published year
By cited within times
By Impact factor

M. J . Ablowitz and Z. H.Musslimani, Phys. Rev. Lett. 110(2013) 064105.
[Cited within: 3]

S. Y. Lou, J. Math. Phys .59 (2018) 083507, arXiv: 1603. 03975( 2016).
[Cited within: 2]

S. Y. Lou , Stud. Appl. Math 143(2019)123, arXiv: 1806.07559[nlinSI](2018).


M. Jia and S. Y. Lou , Phys. Lett. A 382(2018) 1157.


S. Y . Lou and F. Huang,Sci.Rep. 7(2017) 869.
[Cited within: 1]

M. J. Ablowitz and Z. H. Musslimani , Nonlinearity 29(2016) 915.


J. L . Ji and Z. N.Zhu, J. Math. Anal. Appl. 453(2017) 973.


M. J. Ablowitz and Z. H. Musslimani. Phys. Rev. E 90(2014) 032912.


X. Y. Tang and Z. F. Liang , Nonl. Dynamics 92(2018) 815.
[Cited within: 2]

H. Markum, R. Pullirsch, T. Wettig , Phys. Rev. Lett. 83(1999) 484.
[Cited within: 1]

Z. Lin, J. Schindler, F. M. Ellis, T. Kottos , Phys. Rev. A 85(2012) 050101.
[Cited within: 1]

E. R. Christian , et al., Nature Phys. 6(2010) 192.
[Cited within: 1]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, D. N. Christodoulides , Phys. Rev. Lett. 100(2008) 030402.
[Cited within: 1]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari , Rev. Mod. Phys. 71(1999) 463.
[Cited within: 1]

S. Y. Lou , Stud. Appl. Math.134( 2015) 372. 402
[Cited within: 1]

A. Karczewska, P. Rozmej, E. Infeld , Phys. Rev. E 90 ( 2014) 012907.
[Cited within: 1]

T. Kakutani and H.Ono, J. Phys. Soc. Jpn. 26(1969) 1305.
[Cited within: 1]

K. A. Gorshkov, L. A. Ostrovsky, V. V. Papko , Sov. Phys. JEPT 44(1976) 306.
[Cited within: 1]

J. M. Dye and A. Parker , J . Math . Phys 42(2001) 2567.
[Cited within: 1]

B. Yang and Y. Chen, Commun. Nonl. Sci. Numer. Simulat. 69(2019) 287.
[Cited within: 1]

B. Yang and Y. Chen , Chaos 28(2018) 053104.


B. Yang and Y. Chen , Appl. Math. Lett. 82(2018) 43.


C. C. Li, S. Y. Lou, M. Jia , Nonlinear Dyn. 93(2018) 1799.


X. Deng, S. Y. Lou, D. J. Zhang , Appl. Math. Comp. 332(2018) 477.


C. C. Li, Q. Xia, S. Y. Lou , Commun. Theor. Phys. 70(2018) 7.


K. Chen, X. Deng, S. Y. Lou, D. J. Zhang , Stud. Appl. Math. 141(2018) 113.


S.Y Lou . and Z. J. Qiao, Chin. Phys. Lett. 34(2017) 100201.
[Cited within: 1]

婵犵數鍋為崹鍫曞箰閹绢喖纾婚柟鍓х帛閻撴稑顭块懜寰楊亪鎮橀悩缁樼厪闁割偅绻勯崺锝夋煙瀹曞洤鈻堢€规洘绮嶉幏鍛村捶椤撶喐顔忛梻鍌氬€峰ù鍥涢崟顐ゆ殾妞ゆ巻鍋撴い顐g箞婵℃悂鍩℃担铏瑰幀婵$偑鍊栭悧妤呮偡閵堝洩濮抽柡澶婄氨濡插牓鏌¢崘锝呬壕濠电姰鍨洪敃銏犵暦閸濆嫮鏆嗛柛鏇ㄥ墮濞堝矂姊洪崨濠傚Е濞存粎鍋ゅ畷娲灳閺傘儲顫嶉梺瑙勫劤閻°劎浜搁銈囩<婵°倕鍟弸鏃堟煙妞嬪骸鈻堟鐐村灴楠炲洭顢欓崫鍕埅闂傚倷绀侀幖顐﹀磹瑜版帗鍋¢弶鍫氭櫆椤洟鏌ㄩ悤鍌涘
2婵犵數鍋為崹鍫曞箰缁嬫5娲Ω閳哄绋忛梺鍦劋椤ㄥ棝宕甸埀顒勬⒑閸涘﹤濮﹀ù婊呭仱瀹曟椽鏁撻悩宕囧幗闂侀潧绻堥崐鏍р槈瑜旈弻锝夊焺閸愵亝鍣紓浣割儏閿曨亪寮崒鐐村殐闁冲搫鍠氬Σ鍗炩攽閳藉棗浜炲褎顨婇弫瀣磽娴i潧濮傚ù婊嗗煐娣囧﹦鈧稒蓱婵绱掑☉姗嗗剱缂傚秴锕ユ穱濠囶敃閵堝拋鏆梺鍓茬厛閸ㄥ爼宕洪埀顒併亜閹达絾纭舵い锔肩畵閺屾稑鈻庤箛鏇狀唹缂備線缂氬Λ鍕亙闂佸憡娲﹂崢褰掑磻閹烘鈷戦柛婵嗗閳ь剙缍婇幃閿嬫綇閳哄偆娼熷┑顔角瑰▔娑㈡儗濡も偓閳规垿鎮╅幓鎺嗗亾閹间礁閿ゅ┑鐘插枤濞堜粙鏌i幇顒佲枙闁搞倗鍠愮换婵嬪焵椤掑嫬鐒洪柛鎰硶閻鈹戦绛嬫當闁绘绻掔划鍫熷緞鐎n剛顔曢梺鐟邦嚟婵敻寮抽埡鍌滅閻犲泧鍕伓547闂傚倷绀佸﹢閬嶃€傛禒瀣;闁瑰墽绮埛鎺楁煕閺囨娅呴柣蹇d邯閺岋絽螖鐎n偄顏�4婵犵數鍋為崹鍫曞箰缁嬫5娲晲閸モ晝顦梺鐟邦嚟閸嬬喖鍩㈤弮鈧妵鍕疀閹惧顦遍梺绋款儐閹瑰洤鐣峰鈧、鏃堝幢濡ゅ啫骞愰梻鍌欑閸氬顭垮鈧畷顖烆敃閵忋垺娈鹃梺闈涱檧婵″洭鍩㈤弮鍫熺厵闁硅鍔曢惃娲煟閻旈攱璐$紒杈ㄥ笚瀵板嫮鈧綆浜炴禒鐓庘攽閻愯泛绱﹂柛妤勬珪娣囧﹦鈧稒蓱婵挳鎮峰▎娆戝埌濞存粓绠栭弻娑㈠箛閸忓摜鏁栭梺绯曟櫔缁绘繈寮诲☉婊呯杸闁挎繂鎳庨~鈺呮⒑閸涘﹦鎳曠紒杈ㄦ礋楠炲繘鎮╃拠鑼啋闂佸憡渚楅崹鎶剿囬埡鍛拺閻炴稈鈧厖澹曢梻浣告贡鏋紒銊ㄥ亹缁厽寰勯幇顓犲幘闂佸搫瀚换鎺旇姳閹稿簺浜滈柡鍥悘鑼偓娈垮櫘閸嬪﹤顕g捄琛℃瀻闁诡垎鍏俱倝姊绘担鐟邦嚋缂佸鍨胯棟妞ゆ挶鍨归悞鍨亜閹烘埊鏀婚悗姘炬嫹40缂傚倸鍊风粈渚€藝椤栨粎鐭撶€规洖娲ㄧ粻鏃堟煙閹屽殶闁崇粯姊归幈銊ヮ潨閳ь剛娑甸幖浣告瀬閻庯綆浜堕悢鍡涙偣閸ワ絺鍋撻崗鍛棜缂傚倷娴囨ご鎼佹偡閳哄懎钃熺€光偓閸曨偆顓洪梺鎸庣箓濞茬娀宕戦幘缁樻優閻熸瑥瀚崢褰掓⒑閸濆嫭宸濋柛搴㈠灩濡叉劕饪伴崼鐔哄帾闂佺硶鍓濆ú鏍姳缁寬闂傚倷绶氬ḿ褍螞閺冨倻鐭嗗ù锝堫嚉閻熸嫈鏃堝川椤旇瀵栭梻浣告啞娓氭宕㈤挊澶嗘瀺鐎光偓閸曨剛鍘遍梺鍝勫暞閹稿墽澹曢幐搴涗簻闁靛骏绱曢。鑼磼閺冨倸鏋涙い銏℃礋閹晠顢曢~顓烆棜濠电偠鎻紞鈧い顐㈩樀閹繝鍩€椤掑嫭鈷掗柛灞捐壘閳ь兛绮欓、娆愮節閸曨剦娼熼梺鍓插亝濞叉牜绮荤紒妯镐簻闁规崘娉涢宀勬煛娴e壊鍎忔い顓℃硶閹风娀鍨鹃崗鍛寜闂備線鈧偛鑻崢鎼佹煠閸愯尙鍩e┑锛勬暬閹瑩寮堕幋顓炴婵犳鍠楅敃鈺呭礂濞戞碍顫曢柨婵嗘偪瑜版帗鏅查柛鈩冪懅閻撳倸顪冮妶鍐ㄧ仾缁炬澘绉剁划鈺呮偄绾拌鲸鏅濋梺闈涚墕濞诧箓骞嗛敐澶嬧拺闁圭ǹ娴烽埥澶嬨亜閿旇寮柛鈹惧亾濡炪倖甯掗敃銉р偓姘炬嫹28缂傚倸鍊风欢锟犲磻婢舵劦鏁嬬憸鏃堢嵁閸愵喖绠婚柛鎾茬窔閳瑰繑绻濋姀锝嗙【妤楊亝鎸冲畷婵嬪川鐎涙ḿ鍘遍梺鍝勫暊閸嬫挾绱掔€n偅宕岀€殿噮鍋婇幃浠嬪垂椤愩垹骞戦梻浣告惈濞诧箑顫濋妸鈺傚仭闁宠桨璁插Σ鍫ユ煙閻愵剚缍戦柟鍏兼倐閺屽秷顧侀柛鎾卞姂楠炲繘鏁撻敓锟�1130缂傚倸鍊风粈渚€藝椤栨粎鐭撻柛鎾茬閸ㄦ繈鏌ㄩ悢鍝勑㈢紒鈧崒鐐寸厱婵炴垶锕弨缁樼箾閸繄鐒搁柡灞稿墲瀵板嫮鈧綆浜滈~鍥⒑闁偛鑻晶楣冩煙閸戙倖瀚�
相关话题/FifthOrder Alice Systems