删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Interactions of Lump and Solitons to Generalized (2+1)-Dimensional Ito Systems*

本站小编 Free考研考试/2022-01-02

Xuan Du1, Sen-Yue Lou,1,2,??? 1 Department of Mathematics, Ningbo University, Ningbo 315211, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
3 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;

Corresponding authors: ? ? E-mail:lousenyue@nbu.edu.cn

Received:2018-12-2Online:2019-06-1
Fund supported:*Supported by the National Natural Science Foundation of China under Grant .1143505
also sponsored by K. C. Wong Magna Fund in Ningbo University .



PDF (1851KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Xuan Du, Sen-Yue Lou. Interactions of Lump and Solitons to Generalized (2+1)-Dimensional Ito Systems*. [J], 2019, 71(6): 633-639 doi:10.1088/0253-6102/71/6/633

1 Introduction

It is well known that most of integrable systems can be used to describe many important phenomena in physics and other scientific fields. As mathematical models of these phenomena, to seek exact solutions for nonlinear evolution equations (NLEEs) in mathematical physics becomes particularly important. In the last decades, a large number of researchers are interested in the exact solutions including bright[1-2] and dark solitons,[3] breathers,[4] and rogue waves.[5-6] Compared with these solutions, lump solutions localized in all space directions are a special type of rational function solutions. An instanton is soliton, which is localized not only in space directions but also in time. If the amplitude of an instanton is much larger than background waves, then the instanton can be called as a rogue wave. Recently, to study lump solutions, rogue waves and interaction solutions among lumps, rogue waves and solitons become one of the hot topics in many scientific fields such as nonlinear optics,[7] plasmas,[8-9] atmosphere,[10] Bose-Einstein condensations (BECs),[11] and even financial system.[12-13]

To find exact solutions of nonlinear systems, there are many effective methods, for instance, the Lie group method,[14-15] the inverse scattering transformation (IST),[16] the Darboux transformation (DT),[17] the bilinear method,[18] and so on. To research lump solutions of NLEEs, there are a large number of works by using a quite simple and effective Hirota's bilinear method.[19-22] Usually, lump solutions are defined and found for high dimensional equations, say, the $(2+1)$-dimensional Boussinesq equation,[23] the $(2+1)$-dimensional Burgers equation[24] and the $(3+1)$-dimensional Jimbo-Miwa equation.[25]

However, not any physical system can be changed to appropriate bilinear system by only using Hirota's bilinear operators. Thus, it is interesting to extend Hirota's bilinear operators such that more physically important systems can be transformed to suitable bilinear forms.[26]

The $(2+1)$-dimensional Ito equation

$u_{xxxy}+3(uu_{y}+u_{x}\partial_{x}^{-1} u_{y})_{x}+au_{xx}+bu_{xy} \\ +cu_{yy}+du_{yt}=0\,,$
or $u=w_x$

$(w_{xxy}+3 w_xw_{y}+aw_{x}+bw_{y})_x+cw_{yy}+dw_{yt}=0\,,$
possesses a bilinear form,

$(D_{x}^3D_{y}+aD_{x}^2+bD_{x}D_{y}+cD_{y}^2+dD_{y}D_{t})f\cdot f=0\,,$
under the transformation

$u=2(\ln f)_{xx}\,,\quad w=2(\ln f)_x\,,$
with the bilinear operators $D_{x_{i}},\ x_{i}=x,\ y,\ t$ being defined by

$D_{x_{i}}f\cdot f=(\partial_{x_{i}}-\partial_{x^{\prime}_{i}})f(x_{i})f(x^{\prime}_{i})\mid_{x^{\prime}_{i}=x_{i}}\,,$
where $u, f$, and $w$ are differentiable functions of $\{x, y, t\}$ and $a$, $b$, $c$, and $ d$ are arbitrary constants.

The $(2+1)$-dimensional Ito equation is interesting equation which was first established by Ito in 1980~s[27] and many researchers have been studied this equation. In Ref. [28], the authors constructed various periodic wave solutions by a multidimensional Riemann theta function to $(2+1)$-dimensional Ito equation. In Ref. [29], single soliton solution, multiple-soliton solutions, and travelling wave solutions to $(2+1)$-dimensional Ito equation were derived by using four methods. In Ref. [30], the breather waves, rogue waves and solitary waves were obtained.

In Sec. 2 of this paper, we extend the $(2+1)$-dimensional Ito equation to a new general linear and bilinear forms with some arbitrary constants by using the generalized bilinear operators. In Sec. 3, using an appropriate assumption, a lump solution is found for the generalized $(2+1)$-dimensional Ito equation. Section 4 includes the interaction solution between a lump and a stripe soliton induced by the lump. In Sec. 5, the interaction solution between a lump and an induced twin soliton is given. The last section is a short summary and discussion.

2 Generalized Bilinear Operators and Generalized(2+1)-Dimensional Ito Equation

By extending the bilinear operators to more general forms, nonlinear systems can be extended to describe more phenomena in mathematics and physics. The bilinear form of the $(2+1)$-dimensional Ito equation can be rewritten as

$\Bigl(\frac{1}{1+\eta_{1}\xi_{1}\xi_{2}\xi_{3}} \mathcal{D}_{\xi_{1},x}\mathcal{D}_{\xi_{2},x} \mathcal{D}_{\xi_{3},x}\mathcal{D}_{\eta_{1},y} +\frac{a}{1+\zeta_{1}\zeta_{2}}\mathcal{D}_{\zeta_{1},x} \mathcal{D}_{\zeta_{2},x} +\frac{b}{1+\xi\eta}\mathcal{D}_{\xi,x}\mathcal{D}_{\eta,y} \\ +\frac{c}{1+\delta_{1}\delta_{2}} \mathcal{D}_{\delta_{1},y}\mathcal{D}_{\delta_{2},y} +\frac{d}{1+\sigma\tau}\mathcal{D}_{\sigma,y} \mathcal{D}_{\tau,t}\Bigr)f\cdot f=0\,,$
where the generalized bilinear operators $\mathcal{D}_{\alpha,x_{i}}, x_{i}=x, y, t$ are introduced in Ref. [21] and defined by

$\mathcal{D}_{\alpha,x_{i}}f\cdot f=(\partial_{x_{i}}+\alpha \partial_{x^{\prime}_{i}})f(x_{i})f(x^{\prime}_{i})\mid_{x^{\prime}_{i}=x_{i}}\,,$
with arbitrary constant $\alpha$ and seven constant conditions

$ (1+\zeta_{1})(1+\zeta_{2})=0\,,\quad (1+\xi)(1+\eta)=0\,, \quad (1+\delta_{1})(1+\delta_{2})=0\,,\quad (1+\sigma)(1+\tau)=0\,, \quad (1+\xi_{1}\xi_{2}\xi_{3})(1+\eta_{1})=0\,, \\ \eta_{1}(\xi_{1} + \xi_{2} + \xi_{3}) + \xi_{1}\xi_{2} + \xi_{1}\xi_{3} + \xi_{2}\xi_{3}=3(1 + \eta_{1}\xi_{1}\xi_{2}\xi_{3})\,, \quad \eta_{1}(\xi_{1}\xi_{2} + \xi_{1}\xi_{3} + \xi_{2}\xi_{3}) + \xi_{1} + \xi_{2} + \xi_{3}=-3(1 + \eta_{1}\xi_{1}\xi_{2}\xi_{3})\,,$
among twelve parameters $\xi_{1}$, $\xi_{2}$, $\xi_{3}$, $\eta_{1}$, $\zeta_{1}$, $\zeta_{2}$, $\xi$, $\eta$, $\delta_{1}$, $\delta_{2}$, $\sigma$ and $\tau$. When $\alpha=-1$, we can find that the Hirota's bilinear operator $\mathcal{D}_{x_{i}}$ is just the special case of the generalized bilinear operator $\mathcal{D}_{\alpha,x_{i}}$.

With the definition of the generalized bilinear operators, it is reasonable to extend the bilinear $(2+1)$-dimensional Ito Eq. (6) to the form

$ (\mathcal{D}_{\xi_{1},x}\mathcal{D}_{\xi_{2},x} \mathcal{D}_{\xi_{3},x}\mathcal{D}_{\eta_{1},y} +a\mathcal{D}_{\zeta_{1},x}\mathcal{D}_{\zeta_{2},x} +b\mathcal{D}_{\xi,x}\mathcal{D}_{\eta,y} +c\mathcal{D}_{\delta_{1},y}\mathcal{D}_{\delta_{2},y} +d\mathcal{D}_{\sigma,y}\mathcal{D}_{\tau,t})f\cdot f = a_{1}f_{xxxy}f+a_{2}f_{xxx}f_{y}+a_{3}f_{xxy}f_{x} \\ +a_{4}f_{xx}f_{xy}a_{5}f_{xx}f+a_{6}f_{x}f_{x}+a_{7}f_{xy}f +a_{8}f_{x}f_{y}+a_{9}f_{yy}f+a_{10}f_{y}f_{y} +a_{11}f_{yt}f+a_{12}f_{y}f_{t}=0\,,$
with twelve arbitrary constants {$\xi_{1}$, $\xi_{2}$, $\xi_{3}$, $\eta_{1}$, $\zeta_{1}$, $\zeta_{2}$, $\xi$, $\eta$,

$\delta_{1}$, $\delta_{2}$, $\sigma$, $\tau$} without conditions (8), where

$ a_{1}=1+\eta_{1}\xi_{1}\xi_{2}\xi_{3}\,, \quad a_{2}=\eta_{1}+\xi_{1}\xi_{2}\xi_{3}\,, \quad a_{3}=\eta_{1}(\xi_{1}\xi_{2}+\xi_{1}\xi_{3}+ \xi_{2}\xi_{3})+\xi_{1}+\xi_{2}+\xi_{3}\,, \quad a_{4}=\eta_{1}(\xi_{1}+\xi_{2}+\xi_{3})+\xi_{1} \xi_{2}+\xi_{1}\xi_{3}+\xi_{2}\xi_{3}\,, \\ a_{5}=a(1+\delta_{1}\delta_{2})\,, \quad a_{6}=a(\delta_{1}+\delta_{2}),\quad a_{7}=b(1+\xi\eta)\,, \quad a_{8}=b(\xi+\eta)\,, \quad a_{9}=c(1+\epsilon_{1}\epsilon_{2})\,,\quad a_{10}=c(\epsilon_{1}+\epsilon_{2})\,, \\ a_{11}=d(1+\sigma\tau),\quad a_{12}=d(\sigma+\tau)\,.$
The Hirota's bilinear $(2+1)$-dimensional Ito system is equivalent to Eq. (6) under the conditions (8).

The corresponding $(2+1)$-dimensional generalized Ito system related to the generalized bilinear form (9) possesses the form ($a_1=1,\ v_x=w$)

$ (w_{xxy}+3 w_xw_{y}+aw_{x}+bw_{y})_x+cw_{yy}+dw_{yt} + \{v_y [\beta_3 (w^3+6 w w_x+4 w_{xx})+v_y \beta_2+v_t\beta_1] \\ +\,(w^2+2 w_x) (w v_y+2 w_y)\beta_4 +\beta_5 v_y w+(w^2 w_y+2 w w_{xy} -2 w_x w_y)\beta_6+\beta_0 w^2 \}_x=0\,,$
with

$ a_{12}=2\beta_1-c\,, \quad a_{10}=2 \beta_2-a_9\,, \quad a_2=8 \beta_3-1\,, \\ a_4=8 \beta_4-a_3\,, \quad a_{11}=c\,, \quad a_8=2 \beta_5-a_7 \,, \\ a_3=4 \beta_6-3\,, \quad a_5= a\,,\quad a_6=2 \beta_0-a\,, \\ a_7=b\,,\quad a_9= d \,. $

When $\beta_i=0$, $i=0, 1, \ldots, 6$, the generalized $(2+1)$-dimensional Ito equation (11) is reduced back to the known integrable system (3).

3 Lump Solutions of Generalized (2+1)-Dimensional Ito Equation

In Ref. [21], The authors have pointed out that various bilinear systems possess the polynomial solutions

$f=\xi^{2}+f_{0},\quad \xi^{2}\equiv \vec{\xi}\cdot \vec{\xi}=\sum\limits_{i=1}^m \xi_{i}^{2}\,,\quad \vec{\xi}=x\vec{k}+y\vec{p}+t\vec{\omega}+\vec{\alpha}\,,$
which are related to lump solutions.

Substituting Eq. (12) into the generalized bilinear form of the $(2+1)$-dimensional Ito Eq. (9) and vanishing the coefficients of the different powers of $\{x, y, t\}$, it is easy to find the following two solution parameter constraints,

$ \vec{\omega}=\frac1{a_{12}} [(a_{6}-a_{10})\vec{p}-a_{8}\vec{k}] -\frac{2a_{6}(\vec{k}\cdot\vec{p})\vec{p}}{a_{12}p^{2}}\,,$
$ f_{0}=\frac{a_{4}k^{2}p^{2}(\vec{k}\cdot\vec{p})}{a_{6}[k^{2}p^{2} -(\vec{k}\cdot\vec{p})^{2}]} \\ +\frac{p^{2}(\vec{k}\cdot\vec{\alpha}) -2(\vec{k}\cdot\vec{p})(\vec{k}\cdot\vec{\alpha}) (\vec{p}\cdot\vec{\alpha}) +k^{2}(\vec{p}\cdot\vec{\alpha})^{2}}{k^{2}p^{2} -(\vec{k}\cdot\vec{p})^{2}}-\alpha^{2}\,,$
and four model parameter constraints

$a_{11} = -a_{12}\,, \quad a_9 = -a_{10}\,, \quad a_7= -a_8\,, \quad a_5 = -a_6,$
where the dot product between two of $\vec{k}$, $\vec{p}$, $\vec{\alpha}$ vectors are defined as $\vec{k}\cdot\vec{p}=\sum_{i=1}^{m}k_{i}p_{i}$, $\vec{k}\cdot\vec{\alpha}=\sum_{i=1}^{m}k_{i}\alpha_{i}$, $\vec{p}\cdot\vec{\alpha}=\sum_{i=1}^{m}p_{i}\alpha_{i}$, $k^{2}=\vec{k}\cdot\vec{k}=\sum_{i=1}^{m}k^{2}_{i}$, $p^{2}=\vec{p}\cdot\vec{p}=\sum_{i=1}^{m}p^{2}_{i}$, and $\alpha^{2}=\vec{\alpha}\cdot\vec{\alpha}=\sum_{i=1}^{m}\alpha^{2}_{i}$.

With the above conditions, we can verify the following identities by using the relation (13).

$\vec{k}\cdot\vec{\omega}= -\frac{a_{6}k^{2}(\vec{k}\cdot\vec{p}) +a_{8}k^{2}p^{2}+a_{10}p^{2}(\vec{k}\cdot\vec{p})}{a_{12}p^{2}}, \quad \vec{p}\cdot\vec{\omega}= -\frac{2a_{6}(\vec{k}\cdot\vec{p})^{2} -a_{6}k^{2}p^{2}+a_{8}p^{2}(\vec{k}\cdot\vec{p}) +a_{10}p^{4}}{a_{12}p^{2}}\,, \\ \vec{\alpha}\cdot\vec{\omega}= -\frac{2a_{6}(\vec{k}\cdot\vec{p})(\vec{k}\cdot\vec{\alpha}) -a_{6}k^{2}(\vec{p}\cdot\vec{\alpha}) +a_{8}p^{2}(\vec{k}\cdot\vec{\alpha}) +a_{10}p^{2}(\vec{p}\cdot\vec{\alpha})}{a_{12}p^{2}}\,, \\ \omega^{2}=\frac{a_{10}[p^{2}-2a_{6}k^{2} +2a_{8}(\vec{k}\cdot\vec{p})]+a^{2}_{8}k^{2}}{a^{2}_{12}} +\frac{a_{6}[a_{6}k^{4}+2a_{8}k^{2}(\vec{k}\cdot\vec{p}) +4_{10}(\vec{k}\cdot\vec{p})^{2}]}{a^{2}_{12}p^{2}}\,.$
From the above solution expressions, we can find the lump solution conditions, $a_{6}\neq0$, $a_{12}\neq0$, $p^{2}\neq0$, and $k^{2}p^{2}-(\vec{k}\cdot\vec{p})^{2}\neq0$. If not, the $(2+1)$-dimensional Ito equations do not possess lump solution (4) with (12). Figure 1 shows a special evolution of the lump solution with the solution parameters

Fig.1

New window|Download| PPT slide
Fig.1(Color online) The exhibition of the lump solution to $(2+1)$-dimensional Ito equation. (a) shows the lump structure at $t=0$. (b) is the projective density plot of $u$ at $t=0$. (c) shows the lump solution is moving along the straight line with a constant speed at different $t=-60$, $t=0$, and $t=60$. (d) shows the wave height in $y=0$ for $t=0$ in red, $t=-5$ in green, and $t=5$ in the blue.



$-k_{1}=k_{2}=p_{1}=p_{2}=-\alpha_{1}=\alpha_{2}=\alpha_{3}=1\,,\quad k_{3}=\frac{1}{4}\,, \quad p_{3}=-\frac{1}{2}\,, \quad m=3\,,$
and the model parameters

$a_{1}=a_{2}=-a_{5}=a_{6}=-a_{7}=a_{8}=-a_{9}=a_{10}=-a_{11}=a_{12}=1\,, \quad a_{3}=-a_{4}=2$
at $t=0$. The localized property of the lump is revealed in Fig.1(a). Figure 1(b) is the corresponding density plot of the lump solution. Figure 1(c) is the contour plot showing the location of the lump solution at $t=-60$, $t=0$, and $t=60$. The red line is the straight line of $y=({3}/{32})x+{39}/{148}$. Figure 1(d) exhibits the lump wave height in $y=0$ for $t=0$ in red, $t=-5$ in green, and $t=5$ in blue.

4 Lumpoff Solutions to (2+1)-Dimensional Ito Equation

There are some interaction solutions among lump and stripe solitons for various nonlinear systems no matter it is integrable or not. For the purpose of obtaining the interaction solution between a lump and a line soliton for the generalized Ito equation, we write the function $f(x, y, t)$ in the following form

$f=\xi^{2}+f_{0}+ae^{-k_{0}x-p_{0}y-\omega_{0}t-\alpha_{0}}\,,$
with $\vec{\xi}=x\vec{k}+y\vec{p}+t\vec{\omega}+\vec{\alpha}$ which is completely same as Eq. (12) including the solution parameter selections $\vec{\omega}$ (13) and $f_{0}$ (14) and the model parameter relations (15).

Substituting Eq. (19) into the generalized bilinear form of the $(2+1)$-dimensional Ito equation (9), we can find that the constants of \{$k_{0}$, $p_{0}$, $\omega_{0}$\} are completely determined by the lump parameters

$ \omega_{0}=\frac{a_{1}k^{3}_{0}p_{0}-a_{10}p^{2}_{0}- a_{6}k^{2}_{0}-a_{8}k_{0}p_{0}}{a_{12}p_{0}}\,,$
$ p_{0}\!=\!\frac{a_{6}[a_{3}p^{2}k^{2}_{0}-2a_{6}(\vec{k}\cdot\vec{p})]k_{0}} {a_{3}(a_{1}\!+\!a_{2})p^{2}k^{4}_{0}\!-\!2a_{6}(a_{1}\!+\!a_{2})(\vec{k}\cdot\vec{p}) k^{2}_{0}\!-\!2a^{2}_{6}k^{2}}\,,$
$ k^{2}_{0}=\frac{2a_{6}(\vec{k}\cdot\vec{p})[k^{2}p^{2} -(\vec{k}\cdot\vec{p})^{2}]} {p^{2}(a_{3}k^{2}p^{2}-a_{3}(\vec{k}\cdot\vec{p})^{2} +a_{4}k^{2}p^{2} +a_{4}(\vec{k}\cdot\vec{p})^{2})}\,.$

Fig.2

New window|Download| PPT slide
Fig.2(Color online) The evolution plot of the interaction of the lump and a stripe soliton with parameters selections in Eqs. (23) and (24) at times (a) $t=-8$, (b) $t=-1$, (c) $t=0$ and (d) $t=5$ respectively.



The model parameter conditions are the same as Eq. (15) and propose the existence condition of solutions for the generalized bilinear form of the $(2+1)$-dimensional Ito equation Eq. (9). The parameter condition (22) states clearly that the constant $k_{0}$ (and then $p_0$ and $\omega_0$) is completely determined by the lump parameters, the inner products of the vectors $\vec{k}$ and $\vec{p}$ and the model parameters.

From Eqs. (20)-(22), we find that the interaction properties of the lumpoff solution is quite interesting. The lump keeps the shape and moves along the same track with a constant speed before the interaction, it only emerges at one side of the stripe soliton. During the interaction, the lump remaining moves on the same track at the same speed. After the interaction, the lump is swallowed by the stripe soliton. And from Eqs. (20)-(22), we know that the parameters of $k_{0}$, $p_{0}$, and $\omega_{0}$ in soliton part are determined by the lump part, which means the soliton is induced by the lump. In other words, if there is no lump, then there is no stripe soliton.

Figure 2 shows the interaction between lump and one stripe soliton for the field $u$ given by Eq. (4) with Eq. (19) under the parameter selections

$ k_{1}=p_{1}=a=1\,, \\ -k_{2}=k_{3}=p_{2}=p_{3}=\frac{\sqrt{2}}{2}\,, \\ \alpha_{1}=\alpha_{2}=\alpha_{3}=0\,,$
and the model parameter selections

$a_{1}=a_{2}=-a_{11}=a_{12}=1\,, \\ a_{4}=a_{6}=a_{8}=a_{9}=3\,, \\ a_{3}=a_{5}=a_{7}=a_{10}=-3\,.$
Figure 2 is the evolution plot of the interaction solution between the lump and the stripe soliton with the parameter selections in Eqs. (23) and (24) at times (a) $t=-8$, (b) $t=-1$, (c) $t=0$, and (d) $t=5$ at $k_{0}x+p_{0}y+\alpha_{0}<0$ area of the stripe soliton and disappears after the collision.

5 Instanton/Rogue Wave Solutions to Generalized (2+1)-Dimensional Ito Equation}

The algebraic lump soliton can induce not only one stripe soliton but also a twin stripe soliton for many $(2+1)$-dimensional integrable and nonintegrable systems. For the generalized bilinear $(2+1)$-dimensional Ito equation, the algebraic lump soliton can also induce a twin soliton. It is natural to assume the expression of $f$ in the form of

$ f=\xi^{2}+f_{0}+ae^{X_{0}}+be^{-X_{0}}\,, \\ X_{0}=k_{0}x+p_{0}y+\omega_{0}t+\alpha_{0}\,,$
with arbitrary constants $a$ and $b$ while $\xi$ is also defined in Eq. (12).

Substituting Eq. (25) into the generalized bilinear $(2+1)$-dimensional Ito Eq. (9) and eliminating all the coefficients of {$x$, $y$, $t$, $e^{X_{0}}$}, we can obtain 32 algebraic equations related to all the solution and model parameters. It can be inferred that the solution parameter conditions (13), (20), (21), and (22) and the model parameter condition (15) are satisfied by substituting Eq. (25) into Eq. (9) while the parameter $f_{0}$ should be changed as

$ f_{0} = \frac{ab a_{3}(p^{2})^{3}[a_{3}(k^{2}p^{2}-(\vec{k}\cdot\vec{p})^{2}) +a_{4}(k^{2}p^{2}+(\vec{k}\cdot\vec{p})^{2})] (a_{1}+a_{2}+a_{3}-a_{4})k^{6}_{0}} {a^{2}_{6}[2(a_{1}+a_{2})(\vec{k}\cdot\vec{p})^{2} +(a_{3}+a_{4})k^{2}p^{2}][k^{2}p^{2}-(\vec{k} \cdot\vec{p})^{2}]^{2}} \\ +\frac{4[a_{4}k^{2}p^{2}(\vec{k}\cdot\vec{p}) +a_{6}(\vec{k}\cdot\vec{a})^{2}p^{2}+a_{6}k^{2} (\vec{p}\cdot\vec{a})^{2} -2a_{6}(\vec{k}\cdot\vec{p})(\vec{k}\cdot\vec{a})(\vec{p}\cdot\vec{a})]} {a_{6}[k^{2}p^{2}-(\vec{k}\cdot\vec{p})^{2}]}+4a^{2}\,,$
Figure 3 exhibits the interaction solution between the lump and the solitons for the field $u$ given by Eq. (4) with Eq. (25) under the same parameters as in Eq. (23) in addition to $b=1$ and the same model parameters as in Eq. (24).

Fig.3

New window|Download| PPT slide
Fig.3(Color online) The evolution plot of the interaction of the lump and a pair of stripe solitons with parameters selections in Eq. (23) and (24) at times (a) $t=-6$, (b) $t=-2$, (c) $t=0$ and (d) $t=2$ (e) $t=8$.



Figure 3(a) is the two stripe solitons at $t=-6$ with the instanton hiding behind the soliton at the left side with higher amplitude. In Figs. 3(b)-3(e), the instanton appears gradually, passing through the track, reaches its peak at about $t=0$ and decays gradually at $t=2$ respectively. At $t=8$, there is only two stripe solitons shown in Fig.3(e) after the interaction.

It is same as the last section for the lumpoff solution, the instanton solution parameters $k_{0}$, $p_{0}$, and $\omega_{0}$ are all determined by the lump part, which means the twin solitons are induced by the lump part. In other words, if there is no instanton part, then there is no twin soliton part.

6 Summary and Discussion

The $(2+1)$-dimensional Ito equation is extended to a more general form by extending the Hirota's bilinear operators to generalized bilinear operators. For the extended $(2+1)$-dimensional Ito equation, some types of exact solutions such as the lumps, the lumpoffs and instantons (rogue waves) are found by solving the extended bilinear equations.

A lump can induce both a single stripe soliton and a twin stripe soliton. Whence a single stripe soliton is induced, the lump becomes a lumpoff, the lump is cut off by the induced stripe soliton before or after the interaction. Whence a twin stripe soliton is induced, the lump becomes an instanton (or a rogue wave if the amplitude of the instanton is much larger than the twin soliton), the lump is cut off by the induced twin soliton before and after the interaction. This kind of lump, lumpoff and instanton solutions can be found in many integrable and nonintegrable systems such as the integrable and nonintegrable KPI equation, the nonintegrable KPII equation and the $(2+1)$-dimensional Sawada-Kortera equation.

The authors have declared that no competing interests exist.


Reference By original order
By published year
By cited within times
By Impact factor

Th. Busch , J. R. Anglin, Phys.Rev. Lett. 87(2001) 1.
[Cited within: 1]

H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis , et al., Phys. Rev. A 77 ( 2008) 033612.
[Cited within: 1]

W. Zhao and E.Bourkoff, Optics Lett. 14(1989) 13.
[Cited within: 1]

A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev , Phys. Rev. E 91 ( 2015) 022919.
[Cited within: 1]

C. Z. Li, J. S. He, K. Porsezian , Phys. Rev. E 87 ( 2013) 012913.
[Cited within: 1]

L. H. Wang, J. S. He, H. Xu , et al., Phys. Rev. E 95 ( 2017) 042217.
[Cited within: 1]

D. R. Solli, C. Ropers, P. Koonath, B. Jalali , Nature (London) 450(2007) 1054.
[Cited within: 1]

A. Panwar, H. Rizvi, C. M. Ryu , Phys. Plasmas 20 ( 2013) 082101.
[Cited within: 1]

W. M. Moslem, P. K. Shukla, B. Eliasson , Euro. Phys. Lett. 96(2011) 25002.
[Cited within: 1]

A. Montina, U. Bortolozzo, S. Residori, F. T. Arecchi , Phys. Rep. 528(2013) 47.
[Cited within: 1]

Y. V. Bludov, V. V. Konotop, N. Akhmediev , Phys. Rev. A 80 ( 2009) 033610.
[Cited within: 1]

Z. Y. Yan , Phys. Lett. A 375 ( 2011) 4274.
[Cited within: 1]

Z. Y. Yan , Commum. Theor. Phys. 54(2010) 5.
[Cited within: 1]

G. W. Bluman and S. Kumei , Symmetries and Differential Equations, in Grad, in: Texts in Math, 81, Springer-Verlag, New York( 1989).
[Cited within: 1]

H. Y. Zhi , Commun. Theor. Phys. 51(2009) 5.
[Cited within: 1]

M. J. Ablowitz and P. A. Clarkson , Solitons; Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge( 1991).
[Cited within: 1]

V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin( 1991).
[Cited within: 1]

R. Hirota , Direct Methods in Soliton Theory, Springer, Berlin ( 2004).
[Cited within: 1]

J. C. Chen, Y. Chen, B. F. Feng, K. Maruno , Phys. Lett. A 379 ( 2015) 1510.
[Cited within: 1]

Z. Xu, H. Chen, Z. Dai , Appl. Math. Lett. 37(2014) 34.


M. Jia and S. Y. Lou , arXiv: nlin/1710. 06604.
[Cited within: 2]

S. Y . Lou and J. Lin, Chin.Phys. Lett. 35(2018) 050202.
[Cited within: 1]

H. C . Ma and A. P.Deng, Commum. Theor. Phys. 65(2016) 5.
[Cited within: 1]

H. Wang , Appl. Math. Lett. 85(2016) 27.
[Cited within: 1]

X. E. Zhang and Y. Chen , Commun. Nonl. Sci. Numer. Simulat 52 ( 2017) 24.
[Cited within: 1]

Q. Xia and S.Y. Lou, Commun. Theor. Phys. 70(2018) 1.
[Cited within: 1]

M. Ito, J. Phys. Soc . Jpn. 49(1980) 2.
[Cited within: 1]

S. F. Tian and H. Q. Zhang , Chaos, Solitons & Fractals 47 ( 2013) 27.
[Cited within: 1]

A. M. Wazwaz , Appl. Math. Comput. 204(2008) 20.
[Cited within: 1]

X. B. Wang, S. F. Tian, C. Y. Qin, T. T. Zhang , Appl. Math. Lett. 68(2017) 40.
[Cited within: 1]

相关话题/Interactions Solitons Generalized

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹