Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Fund Project:Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030311018, 2017A030313035) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
Received Date:18 February 2021
Accepted Date:25 March 2021
Available Online:07 June 2021
Published Online:05 August 2021
Abstract:Subwavelength artificial structures of high refractive index dielectrics provide an effective way to control and manipulate light on a nanoscale by enhancing electric and magnetic fields. This kind of structure usually has low absorption loss, but its performance is also limited by radiation loss, which will reduce the efficiency of its nonlinear response. This problem can be solved by using bound states in the continuum (BICs). The BICs are a kind of unconventional state which is in continuous domain but remains localized. They exist within a light cone and have an infinite quality factor. By combining BICs with nonlinear optics, high-Q resonances from quasi-BICs are used to excite and enhance the nonlinear response. The simulation shows that when the symmetry of the unit cell of the silicon nanoparticle arrays is broken, the BIC become the quasi-BIC, and the transmission spectrum will produce a high-Q narrow resonance valley. The resonance has polarization dependence of electric field. With the change of pump wavelength, the third-harmonic generation (THG) intensity first increases and then decreases gradually. The pump wavelength changed by several nanometers can change THG intensity by at least one order of magnitude. When the pump wavelength is adjusted to the resonance wavelength, the nonlinearity is significantly enhanced as a result of the strong field localization. The THG intensity is highly sensitive to the variation of asymmetric parameters. Only a change of 75 nm will result in a decrease of THG intensity by at least one order of magnitude. There is a third-order relationship between pump power and THG power. For the proposed structure, the factors affecting the conversion efficiency of THG include pump power, pump wavelength, polarization angle of pump light, and asymmetry parameter. When the polarization direction of electric field is along the short axis of the structure and the pump light at resonance wavelength is vertically incident to the structure with an asymmetric parameter of 0.125, the conversion efficiency of THG can be increased to ~2.6 × 10–6 and the intensity of THG is increased by six orders of magnitude. The results are expected to be applied to designing the silicon-based optical nonlinear devices. Keywords:high refractive index dielectric materials/ quasi bound states in the continuum/ third-harmonic generation
全文HTML
--> --> -->
2.对称保护型BICs及群论硅纳米颗粒阵列如图1(a)所示, 当共振模式与连续谱的对称性不相同时, 共振模式无法与连续谱耦合, 所以该结构存在对称保护型BICs. 下面通过群论来解释结构中的对称保护型BICs. 结构原胞的二维对称示意图如图1(b)所示, 它同时具有镜像对称和旋转对称, 其点群可写为D2h = C2v × C1h, 因此可以利用两点群C2v, C1h的不可约对其模式进行分类. 图 1 (a)硅纳米颗粒阵列示意图; (b)周期结构原胞的二维对称示意图; (c)正方晶格结构的第一布里渊区 Figure1. (a) Schematic diagram of silicon nanoparticle array; (b) two-dimensional symmetry operations for the structure; (c) the first Brillouin zone of the two-dimensional square lattice.
表1点群C4v和点群C2v的对称特征表 Table1.Character of the C4v point group and C2v point group.
-->
3.1.对称保护型BIC
首先研究硅纳米颗粒的周期结构的BICs, 结构原胞示意图如图2(a)所示. 其中硅纳米颗粒的长轴为L = 500 nm, 短轴为d = 200 nm, 两个纳米颗粒中心之间的距离D = 320 nm, 高H = 650 nm, 周期Z = 660 nm. 硅的折射率为3.5, 非线性极化系数${\chi ^{(3)}} = 2.79 \times {10^{ - 18}}\;{{\rm{m}}^{\rm{2}}} \cdot {{\rm{V}}^{ - {\rm{2}}}}$[11]. 周期结构的原胞具有旋转对称和镜像对称, 结构的点群是D2h, 所以在高对称点Γ存在对称保护型BICs. 使用时域有限差分法对结构进行了数值模拟, 认为结构在xy平面无限大且具有完美周期性, 图2(b)所示结构在1329 nm处存在一个对称保护型BIC, 它的Q值为无穷大(可以达到109). xy平面和yz平面的电场和磁场图如图2(c)所示, 可以看到电场和磁场都是局域的状态. 对于本文对称的纳米颗粒结构, 当用电场沿结构短轴方向(y轴偏振)的入射光垂直照射时, 会形成一个沿y方向的电偶极子振荡, 这种电偶极子振荡会产生较强的辐射与非辐射损耗, 当纳米颗粒阵列集体振荡时, 会形成一个很宽的透射谱线—一个辐射明模, 如图2(d)所示. 同时BIC未在透射光谱中显示出来, 这是因为共振模式与自由空间模式的对称性不一致, 无法辐射到外场, 是一个暗模. 图 2 (a)结构原胞示意图; (b) TM偏振的能带图; (c)对称保护型BIC在xy平面和yz平面的电场分布和磁场分布图, 黑色框为结构轮廓; (d)光垂直入射结构的透射谱 Figure2. (a) Schematic diagram of a primitive cell; (b) band diagram of TM polarization; (c) electric field and magnetic field distribution of the symmetry-protected BIC in xy plane and yz plane, and the black frame is the structure outline; (d) transmission spectrum of the structure with normal incidence of light.
23.2.准BIC -->
3.2.准BIC
改变硅纳米颗粒阵列的原胞中其中一个纳米颗粒的长度, 进而打破结构的C2, σy对称性, 如图3(a)所示. 纳米颗粒的长度分别为L和L – 2?L. 通过颗粒长轴长度的差距2?L来控制原胞的不对称性, 定义原胞的不对称性参数为α = ?L/L. 控制其中一个颗粒的长轴长度不变, 改变另一个颗粒长轴长度为450, 425, 400, 375, 350, 325和300 nm, 这分别对应于不对称参数α为0.05, 0.075, 0.1, 0.125, 0.15, 0.175和0.2. 此时由于打破了结构的对称性, BIC转变为一个具有有限Q值的准BIC. 以不对称参数α为0.1的硅纳米颗粒为例, 图3(b)给出了准BIC的xy平面和yz平面的电磁场. 可以看到准BIC和BIC具有相似的电场、磁场分布. 并且由图3(c)可知, 随着对称性的打破, 明模与暗模相耦合, 透射谱出现一个狭窄的谷, 共振波长和线宽对不对称参数α具有强烈的依赖性: 共振谷的位置随着不对称参数α的增加而蓝移, 谷的宽度也逐渐增加. 打破结构的对称性后, 以不对称参数α为0.125是为例(图3(d)), 观察透射谱可以发现, 只有入射光的电场沿结构短轴方向(y轴)时, 有共振谷, 当入射光的电场沿结构长轴方向(x轴)时, 没有共振谷, 说明产生的共振具有偏振依赖性. 图 3 (a)打破结构对称性示意图; (b)准BIC的xy平面和yz平面的电场和磁场图, 黑色框为结构轮廓; (c)改变不对称性参数α透射光谱的变化; (d)不对称参数α为0.125时, 不同的入射光电场偏振方向条件下的透射谱 Figure3. (a) Schematic diagram of breaking structural symmetry; (b) electric and magnetic fields in xy plane and yz plane of the quasi BIC, and the black frame is the structure outline; (c) transmission spectra under different asymmetry parameters α; (d) transmission spectra under different electric field polarization directions of incident light with asymmetry parameter α = 0.125.
如图4所示, Q值也随着不对称参数α的增加而逐渐减小. 对于α值较小的情况(α ≤ 0.1)[10], 准BIC的Q值遵循反二次定律, 关系如下: 图 4Q值和不对称参数α的关系, 红线表示反二次拟合 Figure4. Relationship between Q factor and asymmetry parameter α, and the red line represents the inverse quadratic fitting.
接下来, 研究破坏结构对称性产生的高Q共振对THG的影响. 本文模拟的泵浦光脉冲的功率维持在129.1 mW, 脉冲宽度为400 fs, 重复频率为80 MHz, 光源电场振幅为1.5 × 107 V/m, 峰值泵浦光强为29.63 MW/cm2, 探测THG透射信号. 图5(a)所示为THG强度和不对称参数α之间的关系, 可以看到随着α的增加, THG强度的峰值逐渐蓝移, 当不对称参数为0.125时, THG强度最高, 此时模式的Q值约为765, 所以下文研究不对称参数为0.125时, THG强度与其他参数的关系. 结构不仅具有辐射损耗, 还具有材料吸收损耗以及表面粗糙度等非辐射损耗, 所以模式的总Q值为 图 5 (a) THG强度与不对称参数α的关系; (b)透射反射谱与THG的关系; (c)泵浦波长与THG强度的关系; (d)泵浦功率与THG功率的关系; (e)电场偏振方向与THG强度的关系 Figure5. (a) Relationship between THG intensity and asymmetry parameters α; (b) relationship between transmission and reflectance spectra and THG; (c) relationship between pump wavelength and THG intensity; (d) relationship between pump power and THG power; (e) relationship between polarization direction of electric field and THG intensity.