Fund Project:Project Supported by the National Natural Science Foundation of China (Grant Nos. 11847111, 11674201, 12074340) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0822)
Received Date:27 September 2020
Accepted Date:13 October 2020
Available Online:11 November 2020
Published Online:20 February 2021
Abstract:We study the entanglement dynamics of the three-qubit Dicke model by means of the adiabatic approximation and the exact diagonalization in the parameter regime where the qubit transition frequencies are far off-resonance with the radiation field and the interaction strengths reach the ultrastrong-coupling regime. The single-mode field is prepared in the coherent state and two typical states GHZ and W are chosen as the initial three-qubit states. In the process of evolution, the interaction between the quantized field and three-qubit system leads to the generation of entanglement between the field and qubits, as well as between different parties in the three-qubit system, i.e. the pairwise entanglement of two qubits and the tripartite entanglement, which are of ongoing interest in quantum information process. The generalized concurrence and negativity are adopted to quantify different kinds of entanglement. The qubit-field entanglement never reaches the maximum and no sudden death occurs in the the tripartite entanglement for GHZ state, but it is exactly the opposite for W state. This reflects that the tripartite entanglement of the GHZ state is more robust than W sate, which is the same as in the rotating wave approximation. The results beyond the rotating wave approximation show that the pairwise entanglement gradually decreases and vanishes in the evolution of both initial states, with the tripartite entanglement periodically reaching relatively high level. This means that the interaction in system supports the tripartite entanglement at the cost of pairwise entanglement. The conclusions provide theoretical reference for the robustness of entanglement state and quantum information processing using Dicke model. Keywords:three-qubit Dicke model/ pairwise entanglement/ tripartite entanglement/ robustness
与GHZ态相比, W态为初态时系统随时间演化比较复杂, 约化密度矩阵${{\rho}} _Q^W\left( t \right)$的秩大于2, I tangle不适用于描述$\left( {\rm iv} \right)$类混合态纠缠, 但仍然可以通过纠缠负值度来描述该类纠缠特性[31]. 另外, 依据约化密度矩阵${{\rho}} _{{Q_{23}}}^W\left( t \right)$可得两量子比特间的纠缠负值度$N_{\left(\rm v \right)}^W\left( t \right)$, 进而可以利用$\pi _{123}^W\left( t \right)$来表征三体纠缠特性. 4.讨 论本节将对上一节得到的一些重要结果进行分析与讨论. 图1给出了两种初态下三个量子比特作为整体与光场的纯态纠缠$\left(\rm i \right)$类I tangle, 解析结果分别为(11)式和(19)式. 图2给出了光场和量子比特1结合的子系统与其余量子比特的纯态纠缠$\left( {\rm ii} \right)$类I tangle, 绝热近似下的解析解与数值结果的包络相符合, 左边表示初态为GHZ态, 解析结果如(12)式所示, 只包含单一的振荡因子$S\left( {t, 2\omega } \right)$. 当初始时刻为W态时, 解析结果(21)式中包含两个振荡因子$S\left( {t, \omega } \right)$和$S\left( {t, 2\omega } \right)$, 但通过比较两个振荡因子前的系数, 发现仍然是$S\left( {t, 2\omega } \right)$起决定作用, 因此W态与GHZ态两种情形下的$\left( {\rm ii} \right)$类纠缠演化接近相同, 起初会随着时间的增加而达到峰值, 稳定一段时间后突然减小而后又有所增加并达到峰值, 且没有纠缠突然死亡的现象. 这个特性与图1所示的$\left( \rm i \right)$类I tangle 是截然不同的, 后者只在W初态时才能演化到峰值. $\left( {\rm ii} \right)$类I tangle整体上呈周期性振荡, 且耦合强度越大, 周期越小, 因此可以通过控制两量子比特与辐射场的耦合强度来调控$\left( {\rm ii} \right)$类纠缠行为. 图3给出了GHZ态和W态下光场和量子比特1, 2结合的子系统与量子比特3纠缠的$\left( {\rm iii} \right)$类I tangle, 解析结果分别为(13)式和(22)式. 当耦合强度较弱时, $\left( {\rm iii} \right)$类I tangle都接近于1, 无明显的振荡因子, 且未发现纠缠死亡现象, 是辐射场与量子比特耦合系统中的纠缠稳态. 图 1 初始时刻为GHZ态(左)和W态(右)时, $\left(\rm i \right)$类两体纯态纠缠I tangle, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数为$ \omega = 0.15{\omega _{\rm{c}}}$, $ z = 3$, $g = 0.02{\omega _{\rm{c}}}~\left( {\rm{a}} \right)$, $0.04{\omega _{\rm{c}}}~\left(\rm b \right)$, $0.06{\omega _{\rm{c}}}~\left(\rm c \right)$, $0.08{\omega _{\rm{c}}}~\left(\rm d \right)$ Figure1. Time evolution of the I tangle for the type$\left( \rm i \right)$ with the initial GHZ (left) and W (right) states for$\omega = 0.15{\omega _{\rm{c}}}$, $z = 3$, and different coupling strengths: $g = 0.02{\omega _{\rm{c}}}~\left(\rm a \right)$, $0.04{\omega _{\rm{c}}}~\left(\rm b \right)$, $0.06{\omega _{\rm{c}}}~\left(\rm c \right)$, $0.08{\omega _{\rm{c}}}~\left(\rm d \right)$, given by the numerical method (solid red line), and the analytical approach (dashed blue line).
图 2 初始时刻为GHZ态(左)和W态(右)时, $\left( {\rm ii} \right)$类两体纯态I tangle随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同 Figure2. Time evolution of the I tangle for the type$\left( {\rm ii} \right)$ with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.
图 3 初始时刻为GHZ态(左)和W态(右)时, (iii) 类两体纯态I tangle随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同 Figure3. Time evolution of the I tangle for the type (iii) with the initial GHZ (left) and W (right) states given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.
图4给出了(iv)类纠缠负值度的平方, 即量子比特1和23的两体纠缠, 左图表示初态为GHZ态时该类纠缠随时间演化的最小值非零, 没有发生突然死亡现象, 而右图中初态为W态时该类纠缠出现突然消失的现象. 图5给出了任意一对量子比特的纠缠负值度的平方, 即(v)类纠缠负值度, 左图中GHZ态约化后的两量子比特始于可分离态, 而右图中W态始于纠缠态, 可以发现两种初态下随时间演化的对纠缠都变得很小, 接近于零, 以至于失去了作为信息资源的能力, 这与旋波近似下的结论不同. 图 4 初始时刻为GHZ(左)态和W(右)态时, (iv)类纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同 Figure4. Time evolution of the square of the negativity for the type (iv) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.
图 5 初始时刻为GHZ(左)态和W(右)态时, (v) 类对纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同 Figure5. Time evolution of the square of the negativity for the type (v) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.
在分析了$\left( {\rm iv} \right)$和$\left(\rm v \right)$两类纠缠的基础上, 进一步利用(18)式定义的 π-tangle讨论量子比特之间的三体纠缠. 从图6可以看出, 随着耦合强度的增加, 解析结果可粗略地描述量子比特间的三体纠缠, 将绝热近似下的本征解(5)式和(6)式代入约化密度矩阵中, 进而计算 π-tangle, 可以得出更准确的三体纠缠演化规律. 无论量子比特处于哪一个初态, 在强相互作用下单模辐射场和三量子比特之间会产生纠缠, 即图1所示的$\left(\rm i \right)$类纠缠, 通过比较图1和图6发现, 三体纠缠随时间演化而减弱时, $\left(\rm i \right)$类纠缠就会增强, 反之亦然. 图6的左侧展示了初始时刻为GHZ态时, 三体纠缠在任何区域都没有纠缠猝死现象, 并且图1左侧的$\left(\rm i \right)$类纠缠I tangle没有演化到最大值. 但是W态情况下(图6右侧), 当三体纠缠随时间演化突然猝死时, 图1右侧所示的$\left(\rm i \right)$类纠缠I tangle恰好达到最大值. 在不同初态的纠缠演化中, 不发生纠缠猝死的态不容易与外界系统产生纠缠, 且比发生纠缠猝死的态保持纠缠的能力更强, 即鲁棒性更强. 通过比较两种初态下的纠缠演化情况, 发现GHZ态维持三体纠缠的鲁棒性比W态强, 这与旋波近似下的结论一致. 但是无论初态是GHZ态还是W态, 随时间演化的对纠缠与三体纠缠相比均很弱, 说明系统中的强耦合通过约束对纠缠以实现对三体纠缠的支持. 纠缠态是量子信息领域的基本资源, 其鲁棒性会影响纠缠在量子信息中的应用, 该结果可应用于多量子比特信息处理. 图 6 初始时刻为GHZ(左)态和W(右)态时, 真正的三体纠缠π-tangle随时间的演化, 其中红色(实线)表示数值结果, 绿色(实线)表示绝热近似结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同 Figure6. Time evolution of π-tanglewith the initial GHZ (left) and W (right) given by the numerical method (solid red line), the adiabatic approximation method (solid green line) and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.