Fabrication and characterization of YBa2Cu3O7–$_{ \delta}$ step-edge Josephson junctions on MgO substrate for high-temperature superconducting quantum interference devices
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601900) and the National Natural Science Foundation of China (Grant No. 61571019)
Received Date:08 August 2020
Accepted Date:23 September 2020
Available Online:25 January 2021
Published Online:05 February 2021
Abstract:The YBa2Cu3O7–δ (YBCO) step-edge Josephson junction on MgO substrate has recently been shown to have important applications in making advanced high-transition temperature (high-TC) superconducting devices such as high-sensitivity superconducting quantum interference device (SQUID), superconducting quantum interference filter, and THz detector. In this paper, we investigate the fabrication and transport properties of YBCO step-edge junction on MgO substrate. By optimizing the two-stage ion beam etching process, steps on MgO (100) substrates are prepared with an edge angle θ of about 34°. The YBCO step-edge junctions are then fabricated by growing the YBCO thin films with a pulsed laser deposition technique and subsequent traditional photolithography. The resistive transition of the junction shows typical foot structure which is well described by the Ambegaokar-Halperin theory of thermally-activated phase slippage for overdamped Josephson junctions. The voltage-current curves with temperature dropping down to 77 K exhibit resistively shunted junction behavior, and the Josephson critical current density JC is shown to follow the $(T_{\rm C}-T)^2$ dependence. At 77 K, the JC of the junction reaches 1.4 × 105 A/cm2, significantly higher than the range of 103–104 A/cm2 as presented by other investigators for YBCO step-edge junctions on MgO substrate with comparable θ of 35°–45°. This indicates a rather strong Josephson coupling of the junction, and by invoking the results of YBCO bicrystal junctions showing similar values of JC, it is tentatively proposed that the presently fabricated junction might be described as an S-s′-S junction with s′ denoting the superconducting region of depressed TC in the vicinity of the step edge or as an S-N-S junction with N denoting a very thin non-superconducting layer. By incorporating the MgO-based YBCO step-edge junction, high-TC radio frequency (RF) SQUID is made. The device shows decent voltage-flux curve and magnetic flux sensitivity of 250 $ \text{μ}\Phi_0/{\rm Hz}^{1/2} $ at 1 kHz and 77 K, comparable to the values reported in the literature. To further improve the RF SQUID performance, efforts could be devoted to optimizing the junction parameters such as the junction JC. By using the YBCO step-edge junction on MgO substrate, high-TC direct current SQUID could also be developed, as reported recently by other investigators, to demonstrate the potential of MgO-based step-edge junction in making such a kind of device with superior magnetic flux sensitivity. Keywords:YBa2Cu3O7–δ/ step-edge junction/ superconducting quantum interference device
全文HTML
--> --> --> -->
3.1.YBCO超导薄膜的表征
通过对PLD法薄膜生长参数的调节和优化, 在MgO (100)衬底上制备了表面形貌和超导特性良好的YBCO薄膜. 图1(a)显示了薄膜的SEM图像, 可以看到除了一些离散的、浅灰色条状小晶粒外, 薄膜表面致密均匀, 呈现出PLD法c轴外延生长YBCO薄膜的典型形貌[22]. 利用紫外曝光和湿法刻蚀, 在厚度为180 nm的YBCO薄膜上制备出宽度为9 μm、长度为200 μm的线条, 采用四引线法测得其R-T曲线和77 K时的V-I特性曲线, 分别如图1(b)和图1(c)所示. 从图1(b)可以看到, 在正常态薄膜的电阻率随温度线性变化, 在室温295 K时约为260 μΩ·cm, 与文献报道的YBCO单晶的结果接近[23]. 取超导转变中点的温度为超导转变温度TC, 超导转变10%—90%之间的间隔为超导转变宽度ΔTC, 则由图1(b)中的插图可知, 薄膜的TC = 88.2 K, ΔTC = 0.8 K. TC值高于德国莱布尼茨研究所Kaczmarek等[18]在MgO衬底上生长的单层YBCO薄膜的值(86 K), 与其生长的YBCO/STO/YBCO三层薄膜的值(88—90 K)相仿. 由图1(c), 取V-I曲线上电压从实验精度内的零值转变到1 μ时的电流为超导临界电流, 测得薄膜的超导临界电流密度JC为1.9 × 106 A/cm2, 达到文献报道的较好水平[22]. 上述结果显示, MgO衬底上生长的YBCO薄膜的超导特性与STO等衬底上生长的、用于约瑟夫森结或SQUID制备的YBCO薄膜的特性相似[1], 适用于后续台阶结的制备. 图 1 MgO (100)衬底上YBCO薄膜的表征 (a) SEM图; (b)电阻-温度(R-T)曲线, 插图为超导转变区域的放大; (c) 77 K时的伏安(V-I)特性曲线 Figure1. Characterization of YBCO film on MgO (100) substrate: (a) SEM image; (b) R-T curve with the inset showing a magnified view of the superconducting transition; (c) V-I curve at 77 K.
23.2.MgO衬底台阶的刻蚀 -->
3.2.MgO衬底台阶的刻蚀
制备MgO衬底台阶的两步刻蚀法[15,16,19,24]如图2(a)和图2(b)所示. 在第一步刻蚀中, 首先利用光刻在衬底表面形成光刻胶图案, 如图2(a)所示, 然后以光刻胶为掩模, 利用Ar离子束对衬底进行刻蚀. 刻蚀时Ar离子束在衬底表面的入射角, 即Ar离子束与衬底表面法线方向的夹角为α. 文献结果表明[14,15,18], α的大小对MgO衬底的刻蚀速率、台阶的形貌等都有重要影响. 为进一步调节光刻胶和MgO衬底的相对刻蚀速率, 还需将衬底在载物台平面上(即以衬底的法线为轴)旋转β角度, 如图2(a)所标记. 改变β可改变入射离子束与MgO晶格点阵的角度关系, 从而影响衬底的刻蚀速率[15], 文献中[15,16,18]一般取β = 10°. 图 2 MgO衬底上台阶的两步法离子束刻蚀制备 (a)第一步刻蚀示意图; (b)第二步刻蚀示意图; (c)第一步刻蚀后测得的台阶轮廓图; (d)第二步刻蚀后测得的台阶轮廓图 Figure2. Fabrication of step on MgO substrate by using two-stage ion beam etching: (a) Schematic of the first ion beam etching; (b) schematic of the second ion beam etching; (c) step profile after the first etching measured by a stylus profiler; (d) step profile after the second ion beam etching.
在第一步刻蚀中, 刻蚀溅射出来的MgO等物质在台阶上沿可能会再沉积, 累积之后在台阶上沿表面处形成凸起, 即形成“兔耳”(rabbit ear)状的结构[15,16,24]. 为核实这一情况, 在第一步刻蚀完成后, 用丙酮将光刻胶去除, 通过探针轮廓仪对台阶进行了测量, 结果如图2(c)所示. 可以看到, 在台阶上沿处的确出现如兔耳状的凸起. 这样的凸起对后续YBCO薄膜的生长和台阶结的制备会产生相当负面的影响, 需要将其去除, 这也正是第二步刻蚀的一个主要目的. 如图2(b)所示, 在第二步刻蚀中, Ar离子束沿着衬底表面法线方向垂直入射到衬底上, 将兔耳状的凸起去除的同时, 也具有清洁衬底的作用[15,16,24]. 图2(d)显示了第二步刻蚀后探针轮廓仪对台阶的测量结果. 可以看到, 与图2(c)相比, 台阶上沿处的兔耳状凸起已基本消失不见, 证实了第二步刻蚀的作用. 图2(b)中同时示意地画出了制备得到的MgO衬底台阶的形貌: 在图2(a)中迎着入射离子束的光刻胶侧面处, 衬底上形成比较陡峭的台阶, 用于台阶结的制备; 距离这一台阶稍远的刻蚀区域, 由于相平行的光刻胶的侧面(图2(a)中未画出)背向入射离子束, 衬底上仅出现比较平缓的斜坡. 在β = 10°的条件下, 利用SEM测量研究了α在0°—70°之间变化时对台阶的刻蚀及形貌的影响. 总体上发现, 随着α的增大, 刻蚀得到的台阶角度θ (台阶表面与衬底平面之间的夹角)也增大, 在α = 65°时达到极值, 然后又稍减小. 同时, 在α = 45°附近时, 观察到台阶下沿底部出现沟槽状的过刻蚀现象. 图3展示了α = 65°时制备的台阶的SEM形貌图. 图3(a)为台阶的断面测量, 可看到台阶上下边沿都比较锐利, 台阶角度θ = 34°. 从图3(b)的台阶斜视图可进一步看出, 顺着台阶表面, 台阶边沿都比较整齐均匀. 图3(c)和图3(d)分别为背向离子束入射区域衬底的断面和斜视图, 可以看到, 此刻蚀区域内衬底上仅出现很平缓的斜坡, 与图2(b)中的示意一致. 这将保证只在图3(a)和图3(b)中所示的衬底台阶处形成台阶结, 有利于结的性能的调控及相关超导器件的研制. 图 3 台阶的SEM形貌图 (a)台阶断面图; (b)台阶斜视图; (c)刻蚀区域与台阶相对的另外一边衬底的断面图; (d)刻蚀区域与台阶相对的另外一边衬底的斜视图 Figure3. SEM images of the step: (a) Cross section of the step; (b) oblique view of the step; (c) cross section of the substrate at the other side (opposite to the step) of the defined etching area; (d) oblique view of the substrate at the other side of the defined etching area.
在衬底上通过上述工艺制备出台阶, 然后利用PLD生长YBCO超导薄膜, 进而通过紫外光刻确定结区图形, 制备出YBCO台阶结. 图4显示了一个结样品的R-T曲线, 结微桥线宽10 μm、厚度110 nm、台阶高度210 nm. 可以看到, 随着温度降低, 样品电阻出现陡降, 这与图1(b)相似, 体现出YBCO微桥的超导转变, 转变中点温度TC = 88.3 K. 但与图1(b)不同的是, 在超导转变接近完成时, 结样品电阻下降出现一个明显的拖尾现象, 如图4中的插图所示, 电阻在一个相对较宽的温度区间内缓慢减小, 至约85.5 K时才变为零. 这一差异, 即出现的电阻拖尾现象, 正是YBCO台阶结输运特性的体现[28,29]. 图 4 YBCO台阶结的R-T曲线(插图为拖尾区的放大, 其中红线代表A-H理论拟合) Figure4.R-T curve of the YBCO step-edge junction on MgO substrate. The inset shows a magnified view of the foot-structure region with the red line being a fit to the A-H theory.