Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
Fund Project:Project supported by the China Postdoctoral Science Foundation (Grant Nos. BX20190052, 2020M670739), the National Natural Science Foundation of China (Grant No. 11974068), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT20LAB110)
Received Date:31 August 2020
Accepted Date:19 September 2020
Available Online:09 January 2021
Published Online:20 January 2021
Abstract:Recently, the boom of graphene has aroused great interest in searching for other two-dimensional (2D) compound materials, which possess many intriguing physical and chemical properties. Interestingly, 2D allotropes of differing atomic structures show even more diverse properties. The Bi2Se3 has attracted much attention due to its unique physical properties, while its allotrope has not been investigated. Based on first-principle calculations, here in this work we predict a new phase of Bi2Se3 monolayer with outstanding dynamic and thermal stabilities, named as β-Bi2Se3. Notably, the β-Bi2Se3 monolayer is a semiconductor with a modest direct band gap of 2.40 eV and small effective mass down to 0.52m0, large absorption coefficient of 105 cm–1 in the visible-light spectrum, suitable band edge positions for photocatalysis of water splitting. Moreover, the breaking of mirror symmetry in β-Bi2Se3 along the out-of-plane direction induces vertical dipolar polarization, yielding a remarkable out-of-plane piezoelectric coefficient of 0.58 pm/V. These exceptional physical properties render the layered Bi2Se3 a promising candidate for future high-speed electronics and optoelectronics. Keywords:semiconductor/ Bi2Se3/ allotrope/ electronic structures/ layered material
全文HTML
--> --> --> 1.引 言Bi2Se3是由V-VI主族元素组成的化合物半导体, 属于六方晶系, 具有辉铋碲矿结构, 如图1(a)所示, 我们将其命名为α-Bi2Se3. 该固体具有层状结构, 每层由5个原子层(quintuple layer, QL)组成, 以Se-Bi-Se-Bi-Se方式排布, 层厚约0.96 nm, 由共价键和离子键结合而成, 而QL-QL之间则是通过范德瓦耳斯力结合, 因此可以通过机械剥离得到QL[1]. α-Bi2Se3可通过化学气相沉积[2]、物理化学混合气相沉积[3]、金属-有机化学气相沉积[4,5]、脉冲激光沉积[6]和分子束外延[7-9]等方法制备得到. 2009年, Zhang等[1]通过理论计算预言了α-Bi2Se3是拓扑绝缘体. 同年, 实验上通过角分辨光电子能谱仪第一次观察到其表面的狄拉克锥能带结构, 证明了α-Bi2Se3是一种三维拓扑绝缘体材料[10]. 作为表面态只有1个狄拉克点同时具有较大带隙的强拓扑绝缘体[10], α-Bi2Se3为拓扑绝缘体高性能光电器件的研究提供了可能性[11]. α-Bi2Se3对红外光和太赫兹波有高响应, 可用于红外和太赫兹探测和成像[12]. 此外, α-Bi2Se3薄膜在热电应用方面极具潜力, 其费米能级附近超高的态密度使得Seebeck系数显著增大[13-15]. 图 1 (a) α-Bi2Se3的原子结构; (b)单层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (c)双层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (d)经过10 ps第一性原理分子动力学模拟, 得到了300 K时Bi2Se3单层的平衡结构; (e) β-Bi2Se3的声子谱; (f) β-Bi2Se3单层的电子局域函数 Figure1. (a) Atomic structure of α-Bi2Se3; (b) the top and side views of monolayer β-Bi2Se3; (c) the top and side views of bilayer β-Bi2Se3; (d) snapshots of the equilibrium structures of the β-Bi2Se3 monolayer at 300 K after 10 ps ab initio molecular dynamic simulation; (e) phonon dispersion of monolayer β-Bi2Se3; (f) electron localization function for monolayer β-Bi2Se3.
表1单层、双层和块体β-Bi2Se3相对真空能级的价带顶VBM和导带底CBM, 空穴和电子沿着x和y方向的有效质量(mxh, myh, mxe, mye). 载流子有效质量以自由电子的静止质量m0为单位 Table1.The VBM and CBM related to vacuum level for monolayer, bilayer and bulk β-Bi2Se3, and the corresponding carrier effective mass. m0 is the electron rest mass.
图 4 (a)采用HSE06泛函并且考虑SOC效应的双层(左图)和块体(右图)β-Bi2Se3的能带结构; (b)单层β-Bi2Se3带隙随双轴应变的变化 Figure4. (a) The electronic band structures for bilayer (left panel) and bulk (right panel) β-Bi2Se3 based on HSE06 level with SOC effect; (d) effect of biaxial strain on band gap of monolayer β-Bi2Se3.
图 A3 不同堆叠方式的双层β-Bi2Se3 (a)能量最低的β-Bi2Se3双层结构, 将它的能量设定为0 eV; (b)相对能量为0.32 eV;(c)相对能量为0.55 eV FigureA3.β-Bi2Se3 bilayer with different stacking types and their relative energies: (a) the atomic structure of β-Bi2Se3 bilayer with the lowest energy, and its energy is set to 0 eV; the bilayer structures with relative energies of 0.32 eV (b) and 0.55 eV (c), respectively.
接着, 我们探索了β-Bi2Se3用于光催化水分解的可能, 其中一个重要条件是催化剂的带边必须跨越水的氧化还原电势. 对于水分解反应, 标准还原电势为${E_{{{\rm{H}}^{{ + }}}{{/}}{{\rm{H}}_2}}}$ =–4.44 eV + pH × 0.059 eV, 标准氧化电势为${E_{{{\rm{O}}_2}{{/}}{{\rm{H}}_2}{\rm{O}}}}$ = –5.67 eV + pH × 0.059 eV, 二者均取决于pH值[38-41]. 计算表明, 单层β-Bi2Se3的VBM和CBM(相对真空能级)分别为–5.82 eV和–3.43 eV (见表1), pH = 0和7时带边均跨过水的氧化还原电势(图5(a)), 这说明在酸性和中性环境下, 单层β-Bi2Se3均适用于光催化水分解. 由于双层β-Bi2Se3的带隙很小, 不足以提供水分解的氧化还原势, 因此我们接下来只讨论单层β-Bi2Se3的光催化水分解性质. 良好的光吸收性质是光催化水分解的另一个必要条件. 我们采用HSE06泛函计算了β-Bi2Se3单层的复介电函数, 进而得到光吸收系数(定义为光强在单位长度介质中扩散的衰减). 如图5(b)所示, 单层β-Bi2Se3在可见光范围内表现出很强的光学吸收能力, 可见光谱吸收系数可达105 cm–1, 高于α-Bi2Se3的光吸收系数(104—105 cm–1)[42], 因此可高效捕获大部分太阳光能量用于驱动水分解制氢气. 图 5 (a)单层β-Bi2Se3的VBM和CBM对比pH = 7和pH = 0的氧化还原电势; (b)单层β-Bi2Se3的光吸收系数, λ是波长, 虚线中间区域表示可见光区 Figure5. (a) The location of VBM and CBM relative to vacuum energy of monolayer β-Bi2Se3 at pH = 0 and 7; (b) optical absorption coefficient for monolayer β-Bi2Se3. λ is the wave length, and the area between the red and the purple represents the visible range