1.Key Laboratory of Nondestructive Test, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China 2.Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61775209, 41871229, 61275011) and the Key Research and Development Program of Jiangxi Province, China (Grant No. 20192BBH80019)
Received Date:31 May 2020
Accepted Date:14 July 2020
Available Online:27 November 2020
Published Online:05 December 2020
Abstract:Optical microresonators supporting whispering-gallery modes have been intensively studied in past decades due to their practical applications ranging from fundamental science to engineering physics. Among such microresonators, microsphere resonators have been demonstrated to possess ultra-high quality (Q) factor, however, their shapes usually become non-standard spherical body, leading to irregular resonant spectra. Microring resonators have unique potential in integraibility on chip, but the fabrication imperfection limits their Q-factor only to 106. In addition, the free spectral range (FSR) just depends on their radius. Due to the advantages of high Q-factor, standard shape, slender mode field distribution, the microbottle resonators are demonstrated to possess excellent performance in cavity quantum dynamics, nonlinear optics, high-sensitivity sensing, and micro-laser. In this paper, we carry out a systematic study on the spectral characteristics of prolate microbottle resonator theoretically and experimentally. First, theoretically, the field distribution theory of the microbottle resonator is studied in detail based on Helmholtz equation. Experimentally, prolate microbottle resonators are fabriated via arc discharge technology. Second, the radial modes and axial modes of the microbottles are efficiently excited with the help of a coupled tapered fiber waveguide. By adjusting the coupling gap between the microbottle and the waveguide, The controlling of three cupling states i.e. undercoupling, critical coupling and overcoupling are realized. In our experiment, the whispering-gallery modes excited are identifiable and recognizable. The resonant mode with an ultra-high Q-factor of up to 1.78 × 108 is achieved. The characteristic of ultra-high Q-factor makes the microbottle hold great potential in biochemical sensing, nonlinear optics, and micro-laser. The tuning stability is enhanced by keeping the waveguide in touch with the microbottle. We investigate the selective excitation of whispering-gallery modes by adjusting different coupling points. As a result, clean spectra with robust coupling are observed. The stable device is suitable for improving the sensing performance. Finally, Fano resonance effect is obtained by choosing the diameter of the tapered fiber waveguide. The results presented in this paper will be of great significance for enhancing the sensing, nonlinear optics and cavity quantum dynamics. Keywords:optical microresonator/ microbottle resonator/ whispering-gallery modes/ mode selection/ Fano resonance
全文HTML
--> --> --> -->
2.1.微瓶腔的制备
制备微瓶腔的方法有两种: 一种是热-挤压法[15]; 另一种是球腔-挤兑法[26]. 本文在上述两种方法基础上进一步改进, 具体制备过程如图1所示. 取一根处理后的光纤进行电弧放电处理, 放电时间大概为1 s, 多次放电后, 光纤底端形成微球状. 再取另一根处理后的光纤, 移动其与之前形成的微球在水平位置上一定的重叠区域, 最后对重叠区域多次放电后, 由于光纤的表面压力和两端的挤压后形成微瓶腔. 需要注意的是, 制备微瓶腔过程中形成的微球腔尺寸以及重叠区域的大小对微瓶腔的尺寸具有极重要的作用, 制备出的微瓶腔如图1(d)所示. 该制备方法与传统的热-挤压法相比, 不需要电弧放电过程中实时控制电机. 与球腔-挤兑法相比, 制备方式相对更加简单, 并且更加省时, 节约资源, 而且可以加工出更为扁长的微瓶腔. 此外, 微瓶腔的外形函数直接影响到它的场分布和谐振模式特性, 可以通过控制电弧放电的次数以及重叠区域的大小来达到控制微瓶腔形状和大小. 图 1 扁长型微瓶腔制备过程图 (a) 对单根光纤放电; (b) 微球腔形成; (c) 第二根光纤对齐; (d) 微瓶腔形成 Figure1. The fabrication process of prolate microbottle resonator: (a) The single fiber is heated via electrical arc discharge; (b) the microsphere is formed; (c) another fiber is placed to align the microsphere; (d) the microbottle resonator is formed.
从上面的理论结果得到微瓶腔两种谐振模式, 分别为径向模式和轴向模式, 如图4(a)所示. FSR分为角向模式FSR和轴向模式FSR, 其中, 角向模式FSR表示为 图 4 (a) 相同轴向谐振模式下对应的角向FSR以及相同角向谐振模式下对应的轴向FSR; (b) z方向上前三阶(q = 0, q = 1, q = 2)轴向模式场分布图 Figure4. (a) Angular free spectral range (FSR) with the same axial resonant mode and axial FSR with the same angular FSR; (b) the first three order axial mode field distributions (q = 0, q = 1, q = 2).
搭建了光纤锥波导耦合系统来测试微瓶腔的谐振光谱特性, 如图5所示. 实验装置主要包括可调谐激光器、偏振控制器、微瓶腔与光纤锥波导耦合结构、信号发生器和示波器. 可调谐激光器为New Focus Velocity 6728系列半导体激光器, 线宽小于200 kHz, 波长粗调谐范围为1520—1570 nm, 并且可通过电压扫描的方式实现精密调谐, 其中波长的粗调谐由激光器自带控制器实现, 精密调谐需要外接一定频率的周期三角波信号, 由信号发生器提供, 在耦合实验中, 选择频率为20 Hz的三角波信号来驱动激光器进行精密调谐. 图 5 微瓶腔谐振光谱特性探测系统示意图, 插图为微瓶腔与光纤锥波导耦合系统的显微放大图 Figure5. The detecting system diagram for the resonant spectra characteristic of the microbottle resonators; the illustration is the microscopy enlarged graph of the coupling system consisting of the microbottle resonator and the tapered fiber.
表1实验测得的FSR值与理论计算得到的FSR值比较 Table1.Comparison of FSR value of experimental data and theoretical data.
图 6 粗扫状态下得到的谐振光谱, 图中标记了一阶径向模式下的角向和轴向谐振模式及对应的角向模式FSR和轴向模式FSR Figure6. The resonance spectra of the microbottle resonator for different coupling gaps in coarse scanning, the angular and axial resonant mode in the first order radial mode, angular FSR (FSRq,i) and axial FSR (FSRm,i) are marked in the figure.
由于微瓶腔的谐振模式较多, 无法分辨, 调节可调谐激光器为精扫模式, 在很小的范围观察谐振光谱, 图7给出了通过改变不同耦合间隙位置得到的谐振光谱. 随着耦合间隙g的不断减小, 谐振模式不断激发出来. 在耦合间隙较大的位置, 谐振模式越少. 在g = 1 μm处, 如图7(b)所示, 基本只有一个模式激发, 而且Q值达到了1.78 × 108. 改变耦合间隙时, Q值也在不断地变化, 实现了对Q值的调控, 而且几乎所有的Q值都在107以上. 随着耦合间隙g不断减小, 耦合状态不断变化, 而在耦合状态转变的过程中, Q值呈现减小趋势. 值得注意的是, 尤其在g = 0 μm时, 也就是光纤锥波导与微瓶腔接触时, 大部分模式也能激发出来, 实现良好的耦合. 由于光纤锥波导与微瓶腔处于接触状态, 谐振模式不易受到外界振动的影响, 证明了可以采用接触式耦合的方式来提升微瓶腔的鲁棒性. 图 7 精扫状态下不同耦合间隙得到的谐振光谱 (a)实验操作示意图; (b)?(l)逐渐改变耦合间隙测得的谐振光谱图 Figure7. The resonance spectra for different coupling gaps in fine scanning: (a) Schematic diagram of experimental operation; (b)?(l) the resonance spectra with the gradually changing gap.
当耦合点靠近腔体中心区域时, 即使处于精扫模式下, 激发的谐振模式还是特别多, 因为此处的外形曲线的曲率比较大, 谐振模式包括高阶径向模式和高阶轴向模式都激发了出来. 图8表示了保证微瓶腔与波导接触的前提下, 选择微瓶腔不同耦合点得到微瓶腔的谐振光谱. 当耦合点位置位于A—D时, 激发的谐振模式还较多, 但当从耦合点移动位置到F后, 谐振模式开始逐渐减小, 尤其当耦合点移动位置到J时, 呈现了一个比较干净的谐振模式光谱. 这是因为微瓶腔中较低阶轴向模式的场分布范围较窄, 而较高阶的轴向模式场分布范围较宽, 耦合点逐渐远离微瓶腔中间位置时, 逐渐越过了较低阶轴向模式的截止点, 因此很多低阶模式不再激发. 但当耦合点移动位置到K时, 没有谐振模式激发, 这是由于加工过程中, 电弧放电作用没有到达微瓶腔的尾端区域, 此外不够光滑, 不能形成回音壁模式. 总的来说, 当光纤锥波导处于不同耦合点时, 得到了不同的透射谱, 在越远离中心区的位置, 激发的谐振模式越少, 因此在微瓶腔中很好地实现了选模, 而且Q值仍非常高. 图 8 选择微瓶腔不同耦合点得到的谐振光谱 (a)实验操作示意图; (b)?(l)逐渐改变微瓶腔耦合点测得的谐振光谱图 Figure8. The resonance spectra by choosing different coupling points of the microbottle resonator: (a) Schematic diagram of experimental operation; (b)?(l) the resonance spectra with the gradually changing coupling points of the microbottle.
23.3.Fano谐振特性 -->
3.3.Fano谐振特性
图9表示了通过改变光纤锥波导直径得到的谐振光谱, 图9(a)—图9(d)分别得到了光纤锥波导直径ρ = 4 μm, ρ = 6 μm, ρ = 8 μm, 和ρ = 10 μm时得到的动态谐振线型. 这些谐振线型从对称的洛伦兹线型开始, 当所选择的光纤锥波导直径增大时, 转变为不对称的Fano谐振线型. 图中用数字1—6标记了不对称的Fano谐振线型. 随着光纤锥波导直径变大, 越来越多的谐振模式转换为了Fano谐振线型. 尤其是谐振模式4, Fano谐振线型斜率逐渐增大, 这是由于波导直径变大时, 光纤中的多模与微瓶腔中的谐振模式发生了干涉[28]. 另外, 不同直径下的光纤传播常数存在差异, 在耦合模理论中可以解释为两个光纤模式与谐振模式相互作用时, 两者存在一个相移[29], 波导中传播常数的变化引起了相移的变化, 从而影响了Fano谐振线型斜率. 图 9 (a)?(d)选择不同光纤锥波导直径得到的谐振光谱, 图中标记了不对称的Fano谐振线型 Figure9. (a)?(d) The resonance spectra by choosing different diameters of the tapered fiber waveguide, asymmetric Fano-like lineshapes are marked in the figure.