删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

<sup>129</sup>Xe<i><sup>q</sup></i><sup>+</sup>离子入射C

本站小编 Free考研考试/2021-12-29

摘要:利用动能一定(1360 keV)的高电荷态129Xeq+ (q = 21, 23, 25, 27)离子束和动能为4 MeV的129Xe20+离子束分别入射洁净的Cu靶表面, 流强为nA量级, 离子在飞秒时间尺度内俘获靶电子完成中性化, 能量沉积在靶表面使靶原子离化和激发, 发生复杂组态之间的跃迁. 测量到了炮弹离子中性化后的Xe原子退激跃迁辐射的近红外光谱线和相互作用过程中激发和离化的靶原子退激辐射的近红外光谱线, 其中包括偶极禁戒跃迁(磁偶极和电四极跃迁)和Cu22+的磁偶极退激辐射跃迁的近红外光谱线. 4 MeV的129Xe20+离子入射Cu靶表面, 测量到Cu22+的软X射线、Cu原子的L1 edge和Lβ3跃迁辐射的X射线以及高电荷态129Xe20+中性化后Xe原子退激辐射的Lη和Lβ3 X射线. 结果表明, 低速高电荷态129Xeq+离子入射金属表面中性化过程中, 离子中性化退激和激发离化靶原子辐射红外光谱线, 近红外谱线的单离子荧光产额增加的趋势与入射离子的势能增加趋势相同. Xe原子的特征L X射线是炮弹离子进入表面下形成的第二代空心原子发射的.
关键词: 高电荷态离子/
电偶极禁戒跃迁/
近红外光谱线

English Abstract


--> --> -->
带有多个空穴和较大势能的高电荷态离子入射金属固体表面过程中, 发射大量电子, 如Lemell等[1]采用动能80 keV的Ar8+离子束入射到Au (111)表面, 结果发现单离子电子产额高达19个/ion, 且电子产额随入射离子电荷态的增加而迅速增加, 这说明相互作用过程持续在飞秒时间尺度、纳米空间范围内释放炮弹离子携带的能量, 将使得靶原子离化和激发, 出现靶原子的多种离化态和不同能级的复杂组态, 这些能级退激辐射从近红外到X射线光谱线, 测量分析这些光谱线是研究相互作用过程中的电荷交换、弹性和非弹性碰撞能量转移机理的重要方法之一[2-5], 同时, 碰撞过程中靶原子被激发或离化伴随辐射的光谱线对高能量密度物理的光学诊断具有重要意义[6,7]. 另外, 靶表面造成纳米量级的缺陷和性质损伤在先进功能材料制作和修正、集成量子电路研发中具有重要的应用价值[8,9], 因此, 科学工作者从20世纪50年代至今对离子与固体相互作用的机理展开了大量研究.
Hagstrum[10]最早提出了离子与金属表面相互作用时电子转移的Auger过程, Datz[11]将高电荷态离子与固体相互作用分为三个过程: 共振电子转移、Auger中性化和辐射退激, 并预言: 高电荷态离子与固体表面相互作用的研究正处于发现新现象的前沿. Briand等[12]用Ar17+离子束入射Ag固体靶表面, 根据X射线的KLn伴线首次提出了相互作用过程中炮弹离子形成多空穴高激发态的原子, 即空心原子(hollow atom). Burgd?rfer等[13]从理论上建立了高电荷态离子与金属表面相互作用的物理图像: 低速高电荷态离子在入射靶表面过程中, 在临界距离Rc开始共振俘获靶电子中性化, 形成空心原子, 俘获电子到达的最高激发态的主量子数为nc, 空心原子通过Auger过程和光辐射等过程退激、发射电子和辐射光谱, 此即经典过垒模型(classical over-the-barrier model, COB). K?hrbrück等[14] 用Arq+ (q = 9, 16), Ne9+, 和O7+入射Cu靶表面, 分别测量LMM和KLL Auger 跃迁的电子发射谱, 也证实高电荷态离子在靶上表面俘获电子形成空心原子, 支持了COB模型. 科学工作者利用Auger电子发射、X射线发射以及可见光辐射和靶原子被溅射产额等方法研究这种相互作用过程中的能量沉积和转移的规律[15-18]. 然而, 对此相互作用过程中, 炮弹中性化的空心原子从高激发态向低激发态退激辐射的红外谱线以及被激发离化的靶原子退激辐射红外光谱线的研究较少[19]. 而且最近的研究发现[20], 高电荷态Xe30+离子在与靶原子作用时, 靶原子间存在Coulomb退激过程 (interatomic Coulombic decay, ICD), ICD退激率比Auger过程退激率高两个量级, 这对经典过垒模型是一个较大的挑战.
另一方面, 从X射线到红外谱线, 光谱和光谱技术是人们认知宏观宇宙和微观物质的重要手段. 研究表明[21], 在强激光驱动的核聚变实验研究中, 当等离子体密度大约在1024/cm3量级, 离子温度T > 4 keV时, K, L-X射线成为诊断等离子体参量, 如电荷分布、温度和密度的重要手段. 因此, 最有效的方法是选择中等核电荷数原子作为示踪原子掺于弹丸中, 该示踪原子形成多激发态高离化态的离子, 通过自发辐射退激, 测量其共振特征谱线与伴线的强度和线型研究聚变等离子的时空演化特性. 当等离子体中的电子密度ne在5 × 1010—10–3 cm–3、电子温度Te在1—3 keV范围, 例如Z-pinches和Tokamak装置的实验中[22,23], 由于高Z靶离化产生K, L壳层空穴需花费更大的代价, 同时造成大量的辐射能损, 高Z靶原子的较多电子会给实验前的理论模拟造成更多的复杂性和不确定性. 在多数实验室中, 中等核电荷数原子也作为候选材料, 例如Fe, Ni和Cu等是合适的靶材料, 靶原子被激发离化形成等离子体, 等离子体的时空演化特性通过靶离子的退激辐射的特征谱线表征. 研究表明[24,25], 除了偶极辐射的近紫外和X射线的特征谱线可作为标识谱线, 还发现偶极禁戒(磁偶极和电四极跃迁)辐射的近红外光谱线也是研究等离子特性和天体演化规律的有效目标谱线, 它能有效地刻画高温低密度等离子体的局域密度、温度以及等离子体的运动学特征和局域空间分布特征, 然而这些近红外谱线在高温高密等离子体中出现的机制复杂, 给实验研究造成一定的困难. Kawaguchi等[26]研究激光等离子体中Fe, Cu, Zn和Al靶原子激发后退激辐射的2.5—5 μm红外光谱线. Hinnov等[27]在Tokamak等离子体研究中发现了高离化态Cu XXI, Cu XXIV和 Cu XXVI的磁偶极跃迁辐射的亮线, 通过红外光谱线和磁偶极跃迁辐射线, 可以分析等离子体中局域电子温度和电子密度. 在理论上, 李家明和赵中新[28]以及Han等[29]研究了辐射光谱的线型在高温高密等离子体中的甄别作用以及类Ni等电子序列核电荷数从低Z到高Z、电子组态2p3的高电荷态离子、其总角动量通过L-S耦合和j-j耦合形成的不同原子态之间的电偶极禁戒跃迁的振子强度和谱线分裂的比例规律. Wu等[30]以及腾国华和王永昌[31]研究了Cu II离子的精细分裂能态(电子组态3d94s, 3d94p)的能级寿命以及类B等电子序列高电荷态离子Ca15+, Xe49+和W59+电子激发截面和共振辐射线的极化度. 文献[32, 33]应用组态相互作用和多体微扰论计算了类N等电子序列高电荷态离子的精细结构能级和跃迁率, 这些工作在等离子体诊断和天体物理研究中具有重要的理论指导意义. 理论上预言的电偶极跃迁近红外谱线和电偶极禁戒跃迁由于实验室条件和技术的限制而少有报道[34].
本文在兰州重离子加速器国家实验室用动能为1360 keV的129Xe+q (q = 21, 23, 25, 27)离子束和动能为4 MeV的129Xe20+分别入射洁净的Cu固体表面, 测量了相互作用过程中被激发离化的靶原子辐射的近红外光谱线和炮弹离子中性化后退激辐射的红外光谱线以及X射线谱, 通过测量谱线, 探索炮弹离子中性化和碰撞过程中能量转移规律和靶原子的激发规律.
图1 是实验平台示意图. 束流129Xeq+由18 GHz的电子回旋共振离子源根据需要的动能引出, 经过聚束器、通过分析磁铁选出需要的电荷态的束流, 四极透镜和光栏将束斑调节到直径小于5 mm, 进入具有磁屏蔽的金属高真空(真空度约为10–8 Pa)的靶室与样品相互作用, 样品Cu的化学纯度为99.9%, 表面经过净化处理, 靶面积为15 mm × 15 mm, 厚度0.1 mm. 红外光学窗口和单色仪入射狭缝与束流方向垂直, 且与靶表面成45o角. 实验用美国ARC (Action Reserch Corporation)的红外谱仪SP-2357, 光栅常数600 g/mm, 闪耀波长1.6 μm, 选用InGaA探测器, 有效范围800 —1700 nm, 积分时间3000 ms, 为了提高信噪比和测量精度, 使用锁相放大器(SR830)和斩波器(SR540), 整个实验在暗室条件下完成, 以保证光谱测量的本底最小.
图 1 兰州重离子加速器国家实验室ECR离子源原子物理实验平台
Figure1. Schematic experimental setup for atomic physics platform on ECRIS in HIRFL.

X射线探测器选用AMPTEK公司生产的XR-100 SDD型Si漂移探测器, 探测器的效率如图2, 在峰化时间为9.6 μs, 增益为100的情况下, 探测能量范围是0.5—14.55 keV, 其能量分辨在5.9 keV 时为136 eV, 探测器与束流成45°角, 距离靶点80 mm, 几何立体角0.0011 sr, 实验前用标准放射源241Am 和55Fe 对探测器进行了能量刻度.
图 2 Si漂移探测器探测效率随X射线能量变化的关系图(在能量0.6?1.8 keV之间用5次多项式拟合, 能量1.8?4.0 keV用4次多项式拟合, 4.0?10 keV用3次多项式拟合)
Figure2. Efficiency values of the Silicon Drift Detector. The curve is a fifth polynomial in the 0.6?1.8 keV energy interval, a fourth polynomial in the 1.8?4.0 keV energy interval and a third polynomial in the 4.0–10 keV energy interval.

2
3.1.动能一定、不同电荷态离子束激发靶表面的近红外光谱线
-->动能1360 keV、电荷态分别取q = 21, 23, 25和27的129Xeq+离子束入射Cu靶, 测量相互作用过程发射的近红外光谱线. 图3(a)给出Xe21+入射Cu表面激发的标识的近红外光谱线, 图3(b)给出Xe27+入射Cu表面激发的标识的近红外光谱线, 其中有部分谱线未认定. Cu II 829.78 nm(829.8461)是靶原子被离化激发到151757.601 cm–1 能级 (电子组态3d9(2D5/2)7d, 态项为2[5/2], 角动量为2), 退激到139710.491 cm–1 能级(电子组态 3d8(3F)4s4p(1Po), 态项为3Fo, 角动量为2)辐射的近红外光谱线. Cu I 1665 nm是靶原子被激发到55387.667 cm–1能级(电子组态3d105d, 态项为2D, 角动量为3/2), 退激到49383.264 cm–1能级(电子组态 3d105p, 态项为$^2{\rm{P}}^\circ_{1/2}$, 角动量1/2)辐射的近红外光谱线. Xe I 1435.46 nm是炮弹离子Xe21+俘获靶表面电子中性化后处于激发态92153.279 cm–1能级(电子组态$5{\rm{p}}^5(^2{\rm{P}}^\circ_{3/2})8{\rm{p}}$, 态项为2[1/2], 角动量为1), 退激到85188.777 cm–1能级(电子组态$5{\rm{p}}^5(^2{\rm{P}}^\circ_{3/2})7{\rm{s}}$, 态项为2[3/2]°, 角动量为1)辐射的红外光谱线. 红外谱线的能量不确定度主要来源于多次测量结果的统计误差, 详细的跃迁见表1.
IonObserved
wavelength/nm
Reference
wavelength/nm
Upper levelLower levelTransition
type
ConfigurationTermJConfigurationTermJ
Xe I949.99 ± 0.05949.71[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})4{\rm{f}}$2[3/2]2$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$2[3/2]°2E1
Xe I1240.91 ± 0.011240.91[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{1/2})6{\rm{p}}$2[3/2]1$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$2[3/2]°2E1
Xe I1435.46 ± 0.011435.46[35]$5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})8{\rm{p}}$2[1/2]1$5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})7{\rm{s} } $ 2[3/2]°2E1
Cu I1665.00 ± 0.021664.99[35]3d105d2D3/23d105p21/2E1
Cu II829.78 ± 0.03829.85[35]3d9(2D5/2)7d2[2/5]23d8(3F)4s4p(1P°)3Fo2E1
Cu II900.14 ± 0.02900.14[35]3d9(2D3/2)8s2[3/2]23d9(2D3/2)6p2[3/2]°1E1
Cu II1079.74 ± 0.051079.79[35]3d9(2D5/2)5f 2[7/2]°43d9(2D5/2)5d 2[9/2]4E1
Cu XXIII1140.06 ± 0.011140.0[36]2s22p2(3P)4p2Po3/22s22p2(3P)4p4So3/2M1, E2
Cu XXIII1216.44 ± 0.041216.5[36]2p4(3P)3d4D5/22p4(1D)3p2Fo5/2E1
Cu XXIII1345.36 ± 0.061345.5[36]2s22p2(3P)4f2Fo5/22s22p2(1D)4p2Fo5/2M1, E2
Cu XXIII1374.79 ± 0.071374.0[36]2s2p3(1P)3d2Do5/22p4(3P)3s4P5/2E1
Cu XXIII1420.31 ± 0.061420.1[36]2s22p2(3P)4f4Do1/22s22p2(1D)4p2Do1/2M1, E2


表1129Xeq+入射Cu靶激发的红外光谱线
Table1.Measured near-infrared spectral lines induced by 129Xeq+ ions on Cu surface

图 3 动能一定(1360 keV)的129Xeq+离子入射Cu靶表面激发的近红外光谱线 (a) 129Xe21+; (b) 129Xe27+
Figure3. Measured near-infrared spectral lines induced by 129Xeq+ ions with 1360 keV kinetic energy impacting on Cu surface: (a) 129Xe21+; (b) 129Xe27+

2
3.2.动能为4 MeV的129Xe20+入射靶激发的X射线谱
-->图4给出了离子束与靶原子相互作用辐射的X射线谱. 用Gauss函数拟合, 其中拟合的均方差w与X射线谱的半高全宽存在$2\sqrt {{\rm{ln4}}}\;w$的转换关系.
图 4 动能为4 MeV的129Xe20+离子入射Cu靶表面辐射的X射线谱
Figure4. X-ray spectra induced by 129Xe20+ ions with 4 MeV kinetic energy impacting on Cu surface.

Cu离子和Cu原子被激发辐射的线谱, 其中峰值中心在0.859 keV, 半高全宽为0.239 keV, 为Cu XXIII (Cu22+)的磁偶极退激辐射跃迁2s22p2(3P)3s(4P1/2)→2p5(2P1/2), 峰面积3613, 峰值中心对应波长1.444 nm, 理论值为1.442 nm[32]. 谱右侧有一个包络, 由于所使用的探测器分辨有限, 我们推测, 由于相互作用过程能量大, 存在使Cu原子L壳层产生两个2s空穴的可能性, 因此有Cu I的M3L1 (3P3/2→2S1/2, Lβ3线)的跃迁(文献值1.023 keV)和Cu I的L1 edge跃迁辐射(理论值1.103 keV)[37].
入射离子129Xe20+碰撞产生L壳层空穴退激时形成的Xe I的峰值中心在4.131 keV, 半高全宽为0.161 keV, 是Xe I的M1L2 (3S1/2→2P1/2, Lη线)的跃迁, 峰面积40, 理论值为3.958 keV. 峰值中心在4.473 keV、半高全宽为0.265 keV, 是Xe I的M4L2 (3D3/2→2P1/2, Lβ3线)的跃迁, 峰面积42, 理论值为4.418 keV. 就我们所知, 这是首次获得的实验数据, 理论数据见参考文献[33, 37].
2
3.3.讨论
-->当动能为1360 keV的129Xeq+离子炮弹入射固体表面, 速度约为1.42 × 106 m/s, 小于玻尔速度(VBohr = 2.19 × 106 m/s), WCu = 4.65 eV (铜的功函数), 到达临界距离[13]
${R_{\rm{c}}} = \frac{{\sqrt {8q} }}{{2W}} \approx 38~{\rm{ a}}{\rm{.u}}.$
(其中a.u.为原子单位)开始俘获靶表面电子中性化, 俘获电子进入炮弹离子轨道主量子为
${n_{\rm{c}}} = \frac{q}{{\sqrt {2W} }} \cdot \dfrac{1}{{\sqrt {1 + \dfrac{{q - 0.5}}{{\sqrt {8q} }}} }} \approx 22\;\left( {q = 21} \right).$
利用(1)式和(2)式得到, 当入射离子电荷态q = 21时, Rc ≈ 38 a.u., nc ≈ 22; q = 23, Rc ≈ 40 a.u., nc ≈ 24; q = 25, Rc ≈ 41 a.u., nc ≈ 26; q = 27, Rc ≈ 43 a.u., nc ≈ 28. 入射离子在靶表面开始俘获电子释放势能经历的时间(如电荷态q = 21)
$t = \frac{{{R_{\rm{c}}}}}{v} = \frac{{38 \times 0.53 \times {{10}^{ - 10}}~{\rm{m}}}}{{1.43 \times {{10}^6}~{\rm{m}}/{\rm{s}}}} = 1.41 \times {10^{ - 15}}~{\rm{s}}.$
炮弹129Xe21+ (电子组态[Ar]3d104s24p3)在飞秒时间尺度, 俘获靶导带电子中性化, 将携带的能量(动能1360 keV, 势能5.83 keV)转移给靶原子. Cu I的电子组态 [Ar] 3d104s, 除了4s电子被激发外, d电子也容易被激发形成许多如3d94s5s, 3d94s5p, 3d94s4d等原子态, 它们的激发能均超过电离能[38], Cu原子电离成Cu22+离子需要势能12.819 keV. 所以在以数百nA量级的流强(约1010/s离子)和靶原子相互作用时, 发射大量电子, 使靶原子很容易离化和激发, 出现高电荷态Cu22+(即Cu XXIII)离子, 其电子组态1s22s22p3, 基态为4S$ ^{\rm o}_{3/2} $, 在此相互作用过程中被激发到2s22p2(3P)4p, 2p4(3P)3d, 2s2p3(1P)3d以及2s22p2(3P)4f, 分别向低能态跃迁, 发射近红外光谱线, 在这些跃迁中, 有电偶极辐射跃迁和电偶极禁戒跃迁(磁偶极跃迁和电四极跃迁), 用激光等一般的激发方式很难实现, 这是首次从实验上获得了近红外的谱线, 和理论预言[32,33,36]符合较好. 同时测到了Cu II的高角动量如5d, 5f态的电偶极跃迁辐射的红外光谱线1079.54 nm, 理论计算值为1079.79 nm, 跃迁速率为7 × 106/s[32,36]; 以及炮弹离子Xe21+中性化后形成激发态的Xe原子退激辐射的红外光谱线. Cu22+的1140.06 nm谱线是$ \rm 2s^2 2p^2({}^3P)4p ({}^2P^{o}_{3/2}) $$ \rm 2s^2 2p^2({}^3P)4p({}^4S^{o}_{3/2}) $, 磁偶极跃迁: 跃迁速率为2.813/s, 振子强度为5.481 × 10–8; 电四极跃迁: 跃迁速率为5.065/s, 振子强度为9.869 × 10–13. 1345.36 nm谱线是 2s22p2(3P)4f→2s22p2(1D)4p, 磁偶极跃迁: 跃迁速率为1.285/s, 振子强度为3.487 × 10–9; 电四极跃迁: 跃迁速率为1.149 /s, 振子强度为3.117 × 10–14. 1420.31 nm谱线是2s22p2(3P)4f→2s22p2(1D)4p, 磁偶极跃迁: 跃迁速率为1.412/s, 振子强度为2.135 × 10–9; 电四极跃迁: 跃迁速率为7.739/s, 振子强度为1.170 × 10–15. 以上所述的跃迁速率和振子强度值取自文献[32, 36]. 在组态相互作用表象中, 磁偶极辐射的约化跃迁矩阵是对角的, 电四辐射的约化跃迁矩阵算符是偶宇称算符, 按照角动量和宇称的选择定则[39], 如果
$\left| {{L_{\rm{a}}} - {L_{\rm{b}}}} \right| = 0,{\rm{ }}1,\;{{\textit{π}}_{\rm{a}}}{{\textit{π}}_{\rm{b}}} = + $
成立, 则为M1或E2跃迁. 其中(La, πa)是初态的角动量和宇称, (Lb, πb)是末态的角动量和宇称. 因此, 磁偶极和电四极辐射跃迁初态和末态宇称不变. 磁偶极跃迁概率随离子的有效电荷数Ze的增加而有较快增大.与同一波段的电偶极辐射跃迁概率相比较, 磁偶极辐射概率比其小5个量级, 电四极辐射跃迁概率比其小8个量级, 对于高电荷态离子, 磁偶极辐射概率幅AZe12, 电四极辐射概率幅AZe, 综上, 根据测量的谱线相对强度, 可以判定3个跃迁为磁偶极跃迁辐射的谱线. 红外谱线的单粒子产额YIF近似用
$ {Y}_{\rm{IF}}\approx \frac{R}{N}, \;\;\;\;N=\frac{I}{q\cdot e}\cdot \Delta t$
表示, 其中R表示谱线的相对强度, N是入射离子总数, I为流强, Δt为积分时间, q为入射离子的电荷态, e为元电荷. 利用(4)式进行计算, 3条红外谱线的单粒子产额显示于图5. 从图5可以看出, 随着入射离子129Xeq+的电荷态增加, 其势能即为电离q个电子的电离能的总和, 因此随着离子的电荷态增加, 势能将会更快地增加(电荷态q = 21, 23, 25, 27时, 总势能分别为Ep = 5.83, 7.27, 8.95, 12.01 keV), 释放给靶原子的势能增加, 同时激发的靶原子和离子数目增加, 辐射的谱线强度随之增强. 同样, 一定流强的炮弹离子, 随着携带的势能增加, 释放势能中性化后处于激发态的Xe原子数增加, 因此, 离化和激发的靶原子以及炮弹中性化的原子辐射光谱线的相对强度也在增加, 增加的趋势同炮弹的势能增加趋势相同[5].
图 5 (a) 129Xeq+离子携带势能随电荷态q增加的趋势; (b)近红外光谱线的单粒子产额随电荷态q增加的趋势
Figure5. (a) Potential energy of the 129Xeq+ ion vs. the charge q; (b) single ion fluorescence yield of the near-infrared spectral lines as a function of the projectile charge q where the near-infrared spectral lines are induced by 1360 keV 129Xeq+ (q = 21—27) ion impacting on a Cu surface.

为了消除红外光谱测量时背景辐射对实验的影响, 在实验中采用暗室技术, 对实验数据处理时用谱仪自带的程序作了简单扣除, 高电荷态离子与金属靶作用过程中瞬间电场(强Coulomb场)使靶原子p电子态与d电子态杂化, 发生取向的变化, 使低角动量的电子能级下移, 而较高角动量的电子能级上移, 这样就引起原子能级展宽[40], 引起谱线测量误差, 我们的结果误差小于0.07 nm. 另一方面, 在实验误差范围内, 测量的靶原子Cu22+的谱线中, 与文献理论计算值最大相差0.79 nm, 就我们所知, 目前没有实验值比较.
动能为4 MeV (势能为5.19 keV、电子组态为 [Ar]3d104s24p4、基态3P2)的129Xe20+离子速度为2.43 × 106 m/s, 根据(1)式可以计算出炮弹离子在靶的上表面(从俘获第一个电子开始)经历的时间t = 8.09 × 10–16 s. 根据经典过垒模型[13], 俘获了表面电子(电子进入激发态的主量数nc ≈ 21)的炮弹离子, 没有足够的时间产生L壳层空穴就进入靶下表面, 在进入表面过程中, 炮弹离子将把已经俘获的高壳层电子重新“剥离”以及与靶原子碰撞, 使得炮弹离子和靶原子L壳层电子激发或电离形成空穴, 形成所谓多激发态的“第二代空心原子”[41], 退激辐射特征L X射线.
对于X射线单离子产额可以表示为
$Y = \frac{{{N_x}}}{{{N_{\rm{p}}}{\rm{ }}\eta {\rm{ }}(\varOmega /4{\rm{\pi }})}} = \frac{{{A / {0.00175}}}}{{\dfrac{Q}{{q{\rm{ }}e}}\eta (\varOmega /4{\rm{\pi }})}},$
其中Y是X射线的单粒子产额, Nx是探测器立体角内X射线计数, Np是入射离子计数, Ω 为探测器的立体角(本次实验为0.0011 sr), η是探测器对应X射线能量的探测效率(当X射线能量为0.858 keV 时, η = 0.31; X射线能量为4.112 keV时, η = 0.97; X射线能量为4.473 keV时, η = 0.98). 探测器定标后的道宽为0.00175 keV, A为峰面积, Q为电量值, q为入射离子的电荷态, e为元电荷. 利用(5)式计算得到本次实验测得的Cu XXIII磁偶极退激辐射跃迁单粒子产额为Y = 1.26 × 10–5, Xe I的X射线产额${Y_{{{\rm{L}}_\eta }}}$${Y_{{{\rm{L}}_{\beta 3}}}}$分别为4.46 × 10–8和4.63 × 10–8. 实验测量误差主要产生于束流离子数统计(5%)、原始谱线高斯拟合(9%)和探测立体角探测距离测量误差(3%), 经过误差传递处理以后, X射线产额误差小于10%, 另外, 以前的研究结果表明[42-44], 在高电荷态离子与金属固体靶作用过程中, 由于多重离化会造成谱线蓝移而引起误差.
低速高电荷态离子入射金属靶表面过程中, 在接近靶面附近开始俘获靶导带电子释放势能, 使靶原子离化和激发, 辐射可见到近红外光谱线和X射线以及发射电子, 在此相互作用过程中, 靶原子出现高离化态Cu22+, 发生复杂组态之间的跃迁, 辐射红外光谱线, 谱线的相对强度(单粒子产额)随入射离子的电荷态增加而增加, 据我们所知, 这是首次得到高电荷态离子Cu22+的红外光谱线的实验数据, 特别是Cu22+的磁偶极退激辐射跃迁的软X射线、L1 edge跃迁辐射的X射线. 高电荷态129Xe20+中性化后进入表面下几个原子层, 经历重新剥离和二次中性化形成多激发态的具有L壳层空穴的第二代空心Xe原子, 退激辐射Lη 和Lβ3 X射线, 这些实验数据与理论计算结果符合得较好. 本工作从近红外光谱线到X射线的测量和分析, 说明经典过垒模型在近Bohr速度范围是成立的. 首次从实验上获得了之前理论上预言的红外光谱线和X射线, 说明这种强Coulomb场(约1016 V/cm)瞬时(飞秒量级)作用下, 可以有效地激发原子复杂跃迁. 然而, 炮弹离子与靶构成复杂的多电子系统, 在表面和表面下的相互作用的微观机理尚有争议, 比如Auger过程和ICD过程的速率问题等, 要探索其规律从理论到实验上还需要做更大的努力.
相关话题/辐射 电子 实验 测量 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响
    摘要:采用考虑粒子热效应及粒子温度各向异性的温等离子体介电张量模型,借助绝缘边界条件下径向密度均匀分布等离子体柱中螺旋波与Trivelpiece-Gould(TG)波的本征模色散关系,理论分析了螺旋波等离子体中典型电子温度范围内中等密度、低磁场情形下m=–1,0,+1角向模的能量沉积特性.研究结果表 ...
    本站小编 Free考研考试 2021-12-29
  • 退火效应增强铁磁异质结太赫兹发射实验及机理
    摘要:系统研究了退火效应对飞秒激光脉冲驱动的基于钴铁硼/重金属异质结辐射太赫兹波的影响.通过对发射样品进行退火处理,在钨/钴铁硼结构中观察到三倍增强的太赫兹波辐射,而铂/钴铁硼结构中太赫兹波的强度也获得了双倍提升.通过太赫兹时域光谱系统对异质结样品的透射测量和四探针法电阻率测量实验,验证了退火效应的 ...
    本站小编 Free考研考试 2021-12-29
  • X波段高重频长脉冲高功率多注相对论速调管放大器的设计与实验研究
    摘要:多注相对论速调管放大器向工程化和实用化方向发展,需要进一步提高其工作重频和使用寿命.针对高功率多注相对论速调管放大器在输出腔间隙电子束换能后,会出现电子返流轰击输出腔表面,以及输出腔间隙电场过高产生射频击穿导致输出腔表面出现烧蚀的问题,本文分析了强流相对论电子束在器件中的返流过程,在此基础上设 ...
    本站小编 Free考研考试 2021-12-29
  • 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子
    摘要:利用飞秒激光脉冲激发铁磁/非磁异质结构有望实现高效太赫兹辐射,从而打破制约太赫兹技术快速发展的瓶颈.拓扑绝缘体是一种新型二维材料,其自旋霍尔角远大于重金属材料,可以与铁磁层结合构成自旋太赫兹发射器.为了研究拓扑绝缘体/非磁异质结中的太赫兹产生和调控机理,本综述从飞秒激光激发的超快光电流响应入手 ...
    本站小编 Free考研考试 2021-12-29
  • 自旋电子太赫兹源研究进展
    摘要:太赫兹频段在电磁波谱上位于红外和微波之间,兼具宽带性、低能性、高透性、指纹性等诸多优势特性,在航空航天、无线通信、国防安全、材料科学、生物医疗等领域具有重要的应用前景.太赫兹科学与技术的发展和应用在很大程度上受限于源的水平,新型太赫兹辐射源的机理研究和器件研制至关重要.自旋太赫兹发射不仅从物理 ...
    本站小编 Free考研考试 2021-12-29
  • 基于超快自旋-电荷转换的太赫兹辐射源
    摘要:太赫兹技术在成像、传感和安全等方面展现出了巨大的应用潜力和价值.传统的固态宽带太赫兹源主要依赖于非线性光学晶体和光电导天线,而下一代太赫兹技术的一个主要挑战是开发高效、超宽带和低成本的太赫兹源.最近几年,基于自旋电子学的金属磁性异质结太赫兹源获得了很大关注.本文首先将对该类太赫兹源涉及的物理机 ...
    本站小编 Free考研考试 2021-12-29
  • 分子离子碎裂过程中动能释放的校准方法
    摘要:分子离子碎裂过程中,动能释放(KER)是一个重要的物理参量,通过研究其分布特征,可以获取母体离子态布居、分子结构、以及解离机制等信息.本文以CO2+→C++O+两体碎裂过程为例,详细介绍了KER的重构过程.利用C+离子的二维动量分布、KER与离子出射角度的关系,校准了影响KER重构的实验参数: ...
    本站小编 Free考研考试 2021-12-29
  • 基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布
    摘要:本文研究了多轴差分吸收光谱技术(MAX-DOAS)在可见蓝光波段(434.0—451.5nm)对大气水汽垂直柱浓度和垂直廓线的反演方法.首先,针对水汽吸收峰较窄且较密的问题,采用和仪器狭缝函数卷积的方法获取适用于MAX-DOAS的水汽吸收参考截面,并采用修正系数法校正了水汽饱和吸收效应在此波段 ...
    本站小编 Free考研考试 2021-12-29
  • AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理
    摘要:针对AlGaN/GaN高电子迁移率晶体管器件和异质结构在西安脉冲反应堆上开展了中子位移损伤效应研究,等效1MeV中子注量为1×1014n/cm2.测量了器件在中子辐照前后的直流特性和1/f噪声特性,并对测试结果进行理论分析,结果表明:中子辐照在器件内引入体缺陷,沟道处的体缺陷通过俘获电子和散射 ...
    本站小编 Free考研考试 2021-12-29
  • 分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜
    摘要:4,4′-二吡啶分子结在拉伸过程中呈现出独特的高低电导现象,是分子电子学近十几年研究中的未解之谜.根据实验测量过程以及所采用的技术手段,发展了基于第一性原理计算的分子结绝热拉伸模拟方法,对4,4′-二吡啶分子结的拉伸过程进行了模拟计算.并利用一维透射结合三维修正近似(OTCTCA)方法计算了拉 ...
    本站小编 Free考研考试 2021-12-29