Controlling collision properties of solitons in five-level M-type triple quantum dot electromagnetically induced transparency medium by inter-dot tunneling coupling
Abstract:Experimentally, the triple-quantum-dots system can be produced on a GaAs $ \left[ {001} \right]$ substrate by molecular beam epitaxy or in-situ atomic layer precise etching, thus enabling a triangle triple quantum dot (QD) aligned along the $ \left[ {1\bar 10} \right]$ direction. According to this, we first propose a five-level M-type triple QD electromagnetically induced transparency (EIT) model which consists of a triple QD molecule interacting with a weakly linearly polarized probe field with two orthogonal polarization components under the action of a magnetic field parallel to the light propagation direction. Subsequently, by using the multiple-scale method combined with the Fourier integration method, the propagation characteristics of the optical solitons and the collision characteristics of two solitons in the system are studied. It is shown that the optical solitons can form and propagate stably in this system under the action of quantum inter-dot tunneling coupling whose formation mechanism is different from the soliton-forming mechanism in ultra-cold atomic, single QD, and double QD EIT system. This is because the necessary condition for forming a soliton is to use a strong light beam to modulate a weak light beam, whether it is in an ultra-cold atom system, or a single quantum dot EIT medium or a double quantum dot EIT medium. In a word, the formation of soliton in previous EIT systems needs an additional strong controlling field, while the five-level M-type triple QD EIT system is dependent on the inter-dot tunneling.Since the solitons can propagate stably, the collision properties of the solitons may be studied in this system. Finally, by applying Fourier integration method, it is found that the collision behaviors of two solitons are determined by their initial phase difference. When their initial phase difference is 0, the collision behavior between the solitons is periodic elastic collision. While their initial phase difference is separately $ {\rm{\pi }}/4$, $ \text{π}/2$, and $ \text{π}$, the collision behaviors exhibit separation phenomenon due to repulsive effect. Interestingly, the collision characteristics of two solitons are controlled by the inter-dot tunneling strength. With the increase of inter-dot tunneling strength, the collision period of two solitons with the initial phase difference of 0 decreases, and the repulsive force of two solitons with the initial phase difference being separately π/4, π/2 and π increases. This provides some theoretical basis for experimentally controlling the soliton dynamical properties in semiconductor quantum dot devices. Keywords:inter-dot tunneling coupling/ solition collision behaviors/ phase difference/ electromagnetically induced transparency medium
全文HTML
--> --> -->
2.五能级M型三量子点EIT介质模型根据目前实验[42,43], 以半导体GaAs$\left[ {001} \right]$为衬底, 采用分子束外延和原位原子层精密蚀刻(in-situ atomic layer precise etching)技术组合而成, 沿$\left[ {1\bar 10} \right]$方向可生长出三角形排列的三量子点. 当一束弱线偏振探测光与此三量子点分子相互作用后就可形成五能级M型三量子点模型[41-44], 如图1所示. 根据文献[44-47], 整个模型的具体构成如下: 当一束弱线偏振探测光在与其平行的磁场作用下会分裂成左旋偏振光(${\sigma ^{{ - }}}$)和右旋偏振光(${\sigma ^{{ + }}}$)两偏振分量, 然后, 在外加电场(即给量子点之间提供门电压)后, 可将中间量子点的电子从价带激发到导带形成空穴, 由于导带电子和价带的空穴存在相互作用, 便会形成电子-空穴对, 即图1中的激子态$\left| 1 \right\rangle $和$\left| 2 \right\rangle $. 而隔开量子点的势垒高度可通过量子点之间的门电压来控制. 当中间量子点与左、右量子点之间同时附加偏压后, 则会导致中间量子点导带的电子隧穿到左、右量子点的导带中, 由于量子点间间距较小(一般仅为几个nm), 电子和空穴间的作用仍然比较强, 从而仍然会形成激子态, 如图1中的间接激子态$\left| 3 \right\rangle $和$\left| 4 \right\rangle $. 此时, 能级$\left| 0 \right\rangle $, $\left| 1 \right\rangle $, $\left| 3 \right\rangle $与能级$\left| 0 \right\rangle $, $\left| 2 \right\rangle $, $\left| 4 \right\rangle $分别组成不对称的$\Lambda $型三能级量子点分子模型. 两个$\Lambda $型三能级量子点共用一个基态$\left| 0 \right\rangle $, 组合以后就形成了图1中所描绘的五能级M型三量子点模型. 根据旋波近似和电偶极近似, 在相互作用绘景下体系的哈密顿量可写为 图 1 五能级M型三量子点电磁感应透明介质能级结构图. $ \left| 0 \right\rangle $表示基态, $ \left| 1 \right\rangle $和$ \left| 2 \right\rangle $表示直接激子态, $ \left| 3 \right\rangle $和$ \left| 4 \right\rangle $是间接激子态, $ T{e_1}$和$ T{e_2}$分别表示中间量子点与左、右量子点间的点间隧穿耦合强度 Figure1. Energy level structure diagram of a five-level M-type three-quantum-dot electromagnetically induced transparent medium. Here $ \left| 0 \right\rangle $ is the ground state, $ \left| 1 \right\rangle $ and $ \left| 2 \right\rangle $ are the direct exciton state, $ \left| 3 \right\rangle $ and $ \left| 4 \right\rangle $ represent the indirect exciton state, and $ T{e_1}$ and $ T{e_2}$ represent the strength of tunneling coupling between the intermediate quantum dot and the left and right quantum dot, respectively.
为了检验孤子在五能级M型三量子点EIT介质中传播的稳定性, 图3示出了方程(12)所描述的线性探测光的左旋和右旋两偏振分量的波形${\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$和${\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$分别增加5%的微扰后在EIT介质中随时间的演化情况, 所选量子点参数为: 图 3 不同时刻线性探测光的两偏振分量(a) $ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$和(b)$ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$的传播情况, 图中所用参数为$ {C_1} = 1$, $ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$, 其他的参数已在文中给出 Figure3. The propagation behaviors of two polarized components (a) $ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$ and (b) $ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$ of the linear probe field under the different time. The parameters used are $ {C_1} = 1$, $ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$. Other parameters used are given in the text.
由于五能级M型三量子点EIT介质中孤子的形成是通过双点间隧穿调控所实现, 因此可探究点间隧穿强度对孤子碰撞特征的影响. 图5描绘了线性偏振光的左旋偏振分量振幅随点间隧穿强度变化的关系, 发现当点间隧穿强度比较小时, 孤子的振幅会随着隧穿强度的增加而缓慢增加; 而当点间隧穿强度增加至大约$4\;{\rm{meV}} $后, 孤子的振幅不再随点间隧穿强度的增加而增加而是趋于一稳定值. 因而随后选取点间隧穿强度为$T{e_1} = T{e_2} = 4.32\;{\rm{meV}} $时, 探寻点间隧穿强度对孤子间碰撞特征的影响. 图 5 左旋偏振光的振幅随着点间隧穿强度变化关系. 图中所用各参数已在文中给出 Figure5. The amplitude of the left-handed polarized light as a function of the tunneling strength of the inter-dot. The parameters used are given in the text.