Abstract:An acousto-optic switch scheme based on optical tamm state (OTS) is proposed. The acousto-optic switch’s structure is one-dimensional photonic crystal heterostructure, which is composed of three materials: silicon dioxide, gallium arsenide and tellurium dioxide. All three materials are acousto-optic materials, which can ensure the acousto-optic effect when the ultrasonic wave and the light wave are incident at the same time. Due to the acousto-optic effect, the refractive index and thickness of one-dimensional photonic crystal heterostructures are changed by ultrasonic. The acousto-optic switch changes the ultrasonic amplitude to shift the intrinsic wavelength of OTS to the shorter wave direction. With the increase of ultrasonic amplitude, the intrinsic wavelength of OTS hardly changes after the amplitude exceeds 0.4 nm. This means that the ultrasonic wave with an amplitude of 0.4 nm can shift the intrinsic wavelength to 1538 nm. The acousto-optic switch realizes the on-off function within the permitted range. In this paper, the theoretical model of the acousto-optic switch is established. The propagation of ultrasonic wave in one-dimensional photonic crystal heterostructure is analyzed by theoretical model. The propagation of light in the medium after acousto-optic effect is analyzed by transmission matrix method. The simulation is carried out through COMSOL Multiphysics software. The results show OTS exists and localization can be seen in the electric field diagram. The acousto-optic switch of 1548.8–1551.7 nm can be realized by applying certain amplitude of ultrasonic or not. In this wavelength range, the extinction ratio is not lower than 12 dB and the insertion loss is not higher than 0.97 dB. The maximum extinction ratio is 13.17 dB, and the minimum insertion loss is only 0.65 dB. The acousto-optic switch of 1536.6–1543.3 nm can be realized by applying ultrasonic wave with amplitude corresponding to the length of incident light. In this wavelength range, the extinction ratio is not lower than 12 dB, and the insertion loss is not higher than 0.99 dB. The maximum extinction ratio is 13.15 dB, and the minimum insertion loss is only 0.65 dB. The response time of the acousto-optic switch is less than 13 ns. The acousto-optic switch has the characteristics of high extinction ratio and low insertion loss. It has a good application prospect and can be effectively applied in future optical communication. Keywords:acousto-optic switch/ optical tamm state/ photonic crystal/ acousto-optic effect
4.仿真结果及分析不考虑材料的色散影响和超声波的损耗问题, 使用COMSOL Multiphysics软件对基于OTS的声光开关进行仿真研究. 图2(a)所示为一维光子晶体的反射谱和一维光子晶体异质结的反射谱. 由图可知, 一维光子晶体的反射谱在1200—2200 nm范围内反射率很高, 存在一个禁带. 这是由于其周期性结构的特点, 入射光在一定波长范围内无法穿过光子晶体, 因而出现了光子带隙. 一维光子晶体异质结的反射谱中存在一个反射峰, 反射峰的中心波长在1550 nm处反射率极低. 图2(b)为1550 nm处的电场分布图, 入射光几乎都进入了一维光子晶体异质结, 缺陷层出现强局域现象, 并且局域的电场沿着缺陷层向两端不断衰减. 因此可以判断在1550 nm处存在OTS. 图 2 DBR和OTS的反射谱及电场分布情况 (a) DBR反射谱的禁带范围和OTS的反射谱; (b) 1550 nm处电场分布图 Figure2. Reflection spectrum and electric field distribution of DBR and OTS: (a) Band gap of DBR reflection spectrum and OTS reflection spectrum; (b) electric field distribution at 1550 nm.
对一维光子晶体异质结施加超声波, 会使各层介质的折射率和厚度发生不同程度的变化, 产生声光效应, 从而一维光子晶体异质结的OTS的本征波长发生漂移. OTS本征波长与超声波振幅的关系如图3所示. 图 3 超声波振幅与OTS本征波长关系图 Figure3. Relation diagram between ultrasonic amplitude and OTS intrinsic wavelength.
由图3可以看出, 未施加超声波时OTS本征波长为1550 nm, 随着超声波振幅的增加, 本征波长向短波方向产生一定漂移, 漂移的波长范围为1537—1550 nm. 当振幅超过0.4 nm时本征波长几乎不再发生改变, 因而本文只讨论超声波振幅为0.4 nm以下的情况. 设置超声波激励的频率为20 MHz, 改变超声波的振幅进行仿真实验. 假定超声波经过一维光子晶体异质结的波速为5200 m/s. 图4(a)为声光开关不加超声波和施加振幅为0.4 nm超声波两种情况的反射谱. 从图中可以看到, 施加振幅为0.4 nm的超声波后OTS的本征波长从1550 nm漂移到了1538 nm. 图 4 声光开关施加振幅0.4 nm的超声波和不加超声波的反射谱及电场图 (a) 施加振幅0.4 nm的超声波和不加超声波的反射谱; (b) 不加超声波1538 nm处电场图; (c) 施加振幅0.4 nm的超声波1538 nm处电场图 Figure4. Reflection spectrum and electric field diagram of ultrasonic wave with amplitude of 0.4 nm and without ultrasonic wave: (a) The reflection spectrum of the acousto-optic switch with 0.4 nm amplitude applied and without ultrasonic; (b) electric field diagram at 1538 nm without ultrasonic; (c) electric field diagram at 1538 nm with amplitude of 0.4 nm ultrasonic wave.
基于OTS的声光开关的导通与断开由超声波施加与否实现, 可分为由“通”到“断”和由“断”到“通”两个过程, 其响应时间为两个过程达到系统稳定的时间[23]. 基于OTS的声光开关响应时间与入射光波长的关系如图7所示, 其中实线表示声光开关由“通”到“断”系统稳定所需的时间, 虚线表示声光开关由“断”到“通”系统稳定所需的时间. 可以看出在由“通”到“断”的情况下系统稳定时间不高于13 ns, 在由“断”到“通”的情况下系统稳定时间不高于10 ns. 图 7 声光开关响应时间与入射光波长的关系 Figure7. Relationship between response time of acousto-optic switch and wavelength of incident light.