School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China
Abstract:In this work, pressure-induced rapid solidification of polyphenylene sulfide (PPS) melt is studied on a pressure-jump apparatus. Five PPS samples under a pressure of 0.1 GPa are heated to 563 K, 573 K, 583 K, 603 K and 613 K, respectively. These samples are rapidly compressed to 2.4 GPa in about 20 ms. The solidified samples are quenched to room temperature and then depressured to ambient pressure. The X-ray diffraction (XRD) analyses of the recovered samples indicate that three PPS samples, prepared at 563 K, 573 K and 583 K, contain crystal phases but their crystallinity is lower than that of the original PPS powder. The remaining two PPS samples, prepared at 603 K and 613 K, are in amorphous state but do not sharp crystal diffraction peaks in the XRD patterns. Differential scanning calorimetry curves of the five PPS samples each display an endothermic step of glass transition at about 325 K and an exothermic peak of recrystallization around 360 K. The glass transition temperature decreases roughly with the increase of preparation temperature. The thermal enthalpy of recrystallization process increases with the increase of preparation temperature, indicating that the content of amorphous phase increases. We speculate that the recovered samples are in a “frozen state” of their parent liquid. At 563 K, 573 K and 583 K, the crystalline phases partially melt. More crystal phases melt with the increase of preparation temperature. The molten part is rapidly solidified into amorphous phase. At a temperature higher than 603 K, the crystalline phase fully melts, and after being rapidly compressed, amorphous PPS sample is obtained. For the amorphous PPS sample prepared at 613 K, we investigate whether the interior of this amorphous PPS sample is also in amorphous state. Micro XRD analysis indicates that the central part of the PPS sample is also in amorphous state, which suggests that this PPS sample is of a fully amorphous bulk. For the amorphous PPS sample prepared at 613 K, we investigate its recrystallization product. After being annealed at 425 K for 2 h, the amorphous phase, which is solidified from the melt of crystal phase, is recrystallized into the orthorhombic crystal phase. The results in this work indicate that the rapid compression can inhibit the PPS melt from being crystalized, so, it is a way to prepare amorphous PPS bulk. Since the solidification of polymer melt is realized by increasing pressure instead of quenching and is not limited by polymer thermal conductivity, it is a promising way to prepare amorphous polymer bulks with large size. Keywords:pressure-induced solidification/ amorphous polyphenylene sulfide/ glass transition/ crystallization
如引言中所述, 快速加压过程中熔体的凝固不是靠温度变化, 而是靠压力变化, 样品表面和内部处在一致的温度下同时受压凝固, 所以样品中心和表面的结构应该相同. 为了判断表面为非晶态的聚苯硫醚样品中心是否也是非晶态, 本文对613 K温度下快压凝固样品的中心位置进行了微区XRD. 如图4所示, 样品中心位置的衍射谱中没有尖锐的晶体衍射峰, 只有宽的弥散的非晶衍射峰, 说明样品的内部也是完全非晶态. 实验结果证实了聚苯硫醚熔体在快速加压作用下凝固为表面和中心均为非晶态的块体, 相比于文献中急冷法获得的聚苯硫醚非晶态薄膜, 本工作首次制备了非晶态聚苯硫醚块材. 由于热传导对凝固过程没有影响, 因此本方法制备的非晶态聚苯硫醚的尺寸不受热传导率限制, 适合制备大尺寸非晶块材. 图 4 613 K温度下快压凝固样品中心位置的微区XRD谱 Figure4. Micro XRD pattern taken at the center of PPS sample, which is solidified by rapid compression at 613 K.
采用差示扫描量热法研究了快压凝固法制备的非晶态聚苯硫醚的稳定性, 在300—450 K范围内测量了五个聚苯硫醚样品的DSC曲线, 如图5所示. 五个样品的DSC曲线在325 K左右都出现一个吸热台阶, 这个吸热过程对应于玻璃化转变, 在360 K左右出现一个放热峰, 这个放热过程对应于非晶相再结晶, 玻璃化转变和晶化过程的热力学参数如表1所列. 随着制备温度的升高, 玻璃化转变温度降低, 说明母液体的温度对凝固的非晶相玻璃化转变过程有影响. 图2(b)中原始粉末没有明显的放热结晶峰, 说明聚苯硫醚固有的非晶相结构稳定, 熔化前不会发生晶化. 那么, 图5中的放热结晶峰则对应于快压凝固过程中形成的非晶相, 即晶体熔化后的无序液相被快速凝固形成的非晶相. 随着制备温度的升高, 结晶过程的热焓越来越高, 说明非晶相的含量随制备温度的升高而提高, 与XRD的结论一致. DSC测试结果也支持了我们关于563, 573和583 K温度下聚苯硫醚晶体相发生部分熔化, 熔融部分被快压凝固为非晶相的推测. 快压凝固样品过冷液相区的宽度约为30 K, 温度范围较宽, 适合在过冷液相区对非晶态聚苯硫醚进行加工成型等. 图 5 不同温度下快压凝固的聚苯硫醚样品的DSC曲线, 内插图给出了不同热力学参数的取值方法 Figure5. DSC traces of PPS samples which is solidified by rapid compression at different temperatures.