1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China 2.Key Laboratory Optoelectronic Sensing Integrated Application of Henan Province, Henan Normal University, Xinxiang 453007, China 3.School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract:A symmetrical wedge-to-wedge THz hybrid SPPs waveguide (WWTHSW) with low propagation loss is investigated. The WWTHSW consists of two identical dielectric wedge waveguides symmetrically placed on each side of a micro wedge-patterned thin metal film. The mode characteristics of the WWTHSW, such as the propagation length (Lp), the normalized effective mode area (A) and the figure of merit (FOM) are analyzed by using the finite element method (FEM). Firstly, the influences of the height of Si micro wedge waveguide (H) and the gap between two wedges (g) on Lp and A are studied. For the same g, A first decreases and then increases with the increase of H. A achieves a minimum at an H of ~40 μm. However, Lp monotonically increases as H increases. The change of Lp slows down when H is greater than 40 μm. At a fixed H, Lp slightly increases with the increase of g. But A achieves a minimum when g is ~50 nm. Secondly, the dependencies of the mode characteristics of the WWTHSW on Si wedge tip angle (α) and Ag wedge tip angle (θ) are analyzed. At a fixed α, θ has less effect on Lp and A. As α increases at a fixed θ, Lp increases monotonically but A decreases firstly and then increases. A reaches a minimum when α increases to ~100°. Then, the change of Lp and A with the thicknesses of Ag film (d) and Ag wedge (h) are demonstrated. At a fixed h, both Lp and A slightly decrease as d increases. For the same d, Lp and A decrease with the increase of h. A for h = 0 μm is distinctly larger than those for h = 2 μm and h = 5 μm. According to the above optimizations, the parameters of the WWTHSW are chosen as d = 100 nm, g = 50 nm, h = 2 μm, θ = 80°, α = 100°, H = 40 μm. Under the optimal parameters, Lp of ~51 mm is obtained when Am reaches ~λ2/10280. Compared with the previous hybrid THz plasmonic waveguide, Lp of the WWTHSW increases by 3 times, and A decreases by an order of magnitude. This result reveals that the WWTHSW enables low-loss propagation and ultra-deep-subwavelength mode confinement at THz frequencies. At last, the coupling property of the parallel WWTHSW is investigated. The coupling length of ~8958 μm is achieved without the crosstalk between two parallel waveguides. By comparison, the WWTHSW has more advantages in terms of transmission and coupling characteristics than the previous micro wedge waveguide structure and bow-tie waveguide structure. In summary, due to the excellent transmission and coupling characteristics, the WWTHSW has great potential in the fields of optical force in trapping, biomolecules transporting, and in high-density integrated circuits design. Keywords:hybrid plasmonic waveguide/ surface plasmonpolaritons/ transmission characteristics/ coupling characteristics
4.不同对称性SPPs波导比较为了比较不同对称性混合表面等离子体波导结构的特性, 利用FEM对WWTHSW、HTMWSPPs波导和HTBTSPPs波导的模式特性和传输特性进行了分析. HTMWSPPs波导、HTBTSPPs波导的截面模型如图5(a)所示. 图 5 不同波导性能比较 (a) WWTHSW, HTMWSPPs和HTBTSPPs波导的截面图; (b) WWTHSW, HTMWSPPs和HTBTSPPs波导的A与Lp关系图; (c)品质因数 Figure5. Performance comparison of the WWTHSW, HTMWSPPs and HTBTSPPs wavguide: (a) cross-section views; (b) the relationship between A and Lp; and (c) FOM with different parameters.
图5(b)为Lp与A的相关性对比图. 在仿真中WWTHSW和HTMWSPPs波导选择最佳参数H = 40 μm, h = 2 μm, θ = 80°, α = 100°, g = 50 nm, d = 100 nm. HTBTSPPs波导选择最佳参数H = 10 μm, W = L = 30 μm. 由图5(b)可知, WWTHSW比HTMWSPPs波导和HTBTSPPs波导的Lp更长. 相比于HTMWSPPs波导, WWTHSW由于尖端场增强效应, 光场主要聚集在楔形波导的顶点附近[1], 具有更强的模场限制能力; 而相比于HTBTSPPs波导, WWTHSW没有矩形Si波导部分, 有利于模场能量的集中, 因此具有更小的模场面积. g在50 nm到2 μm范围内, WWTHSW的有效模场面积(Am = λ2/10280)相比于HTBTSPPs波导(Am = λ2/5405)减小近2倍, 相比于HTMWSPPs波导(Am = λ2/7407)减小近1.5倍. 在相同的有效模场面积Am = λ2/5405的情况下, WWTHSW的Lp为65×103 μm, 是HTMWSPPs波导(Lp = 54 × 103 μm)的1.2倍, 是HTBTSPPs波导(Lp = 33 × 103 μm)的2倍. 而在相同的传播长度Lp = 51 × 103 μm的情况下, WWTHSW的有效模场面积(Am = λ2/10280), 比HTBTSPPs波导(Am = λ2/4422)减小2倍. 由图5(c)可知, 相比于HTBTSPPs波导、HTMWSPPs波导, WWTHSW品质因数更好. 因此, WWTHSW相比HTBTSPPs波导、HTMWSPPs波导在相似的传播长度下, 具有更强的模场限制能力和更好的品质因数. 为了分析WWTHSW的耦合特性, 构建两根间距为D的平行WWTHSW, 如图6(a)所示. 通常, 波导的耦合特性由波导的耦合长度Lc = π/(βs – βa)来衡量, 其中βs和βa分别是两个相邻波导的对称和反对称模的传播常数[28]. 图 6 波导耦合特性分析 (a)平行波导三维结构示意图; (b)耦合长度随D的变化; (c)最大传输功率随D的变化 Figure6. Coupling characteristic of waveguides: (a) schematic diagram parallel waveguides; (b) Lc versus the separation between the two waveguides; (c) the maximum transfer power (Pmax) as a function of distance D.