1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China 2.Key Laboratory Optoelectronic Sensing Integrated Application of Henan Province, Henan Normal University, Xinxiang 453007, China 3.School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract:A symmetrical wedge-to-wedge THz hybrid SPPs waveguide (WWTHSW) with low propagation loss is investigated. The WWTHSW consists of two identical dielectric wedge waveguides symmetrically placed on each side of a micro wedge-patterned thin metal film. The mode characteristics of the WWTHSW, such as the propagation length (Lp), the normalized effective mode area (A) and the figure of merit (FOM) are analyzed by using the finite element method (FEM). Firstly, the influences of the height of Si micro wedge waveguide (H) and the gap between two wedges (g) on Lp and A are studied. For the same g, A first decreases and then increases with the increase of H. A achieves a minimum at an H of ~40 μm. However, Lp monotonically increases as H increases. The change of Lp slows down when H is greater than 40 μm. At a fixed H, Lp slightly increases with the increase of g. But A achieves a minimum when g is ~50 nm. Secondly, the dependencies of the mode characteristics of the WWTHSW on Si wedge tip angle (α) and Ag wedge tip angle (θ) are analyzed. At a fixed α, θ has less effect on Lp and A. As α increases at a fixed θ, Lp increases monotonically but A decreases firstly and then increases. A reaches a minimum when α increases to ~100°. Then, the change of Lp and A with the thicknesses of Ag film (d) and Ag wedge (h) are demonstrated. At a fixed h, both Lp and A slightly decrease as d increases. For the same d, Lp and A decrease with the increase of h. A for h = 0 μm is distinctly larger than those for h = 2 μm and h = 5 μm. According to the above optimizations, the parameters of the WWTHSW are chosen as d = 100 nm, g = 50 nm, h = 2 μm, θ = 80°, α = 100°, H = 40 μm. Under the optimal parameters, Lp of ~51 mm is obtained when Am reaches ~λ2/10280. Compared with the previous hybrid THz plasmonic waveguide, Lp of the WWTHSW increases by 3 times, and A decreases by an order of magnitude. This result reveals that the WWTHSW enables low-loss propagation and ultra-deep-subwavelength mode confinement at THz frequencies. At last, the coupling property of the parallel WWTHSW is investigated. The coupling length of ~8958 μm is achieved without the crosstalk between two parallel waveguides. By comparison, the WWTHSW has more advantages in terms of transmission and coupling characteristics than the previous micro wedge waveguide structure and bow-tie waveguide structure. In summary, due to the excellent transmission and coupling characteristics, the WWTHSW has great potential in the fields of optical force in trapping, biomolecules transporting, and in high-density integrated circuits design. Keywords:hybrid plasmonic waveguide/ surface plasmonpolaritons/ transmission characteristics/ coupling characteristics
从图2(c)可以看出, 对于相同的g, A随着H的增加而先减小再增大, H约40 μm处A达到最小值. 对于较小的SWWs(H小于40 μm), 混合模式主要由SPPs模式决定(MC < 0.5), 观察归一化能量密度分布图2(d)可发现, 该模式约束相对较弱. 当楔形波导的尺寸增大时(H大于40 μm), WWTHSW模式表现为低损耗SWWs模式(MC > 0.5), 大多数模式能量主要集中在高介电常数的SWWs芯部(如图2(f)), 从而导致模式面积增大. 在H = 40 μm时(MC = 0.5), 波导模式介于SWWs和SPPs模式之间, 处于一种临界状态, 同时具有SWWs和SPPs的模式特性, 此时模式面积A有最小值. 当H不变, A随着g的增大而增大, 这是由于g的增大使得模式能量分布逐渐远离Ag表面, 波导模式能量更加分散, A随之增大, 变化范围从3.62 × 10–4到3.69 × 10–3. 因此, 本文以下的研究中, 选择H = 40 μm, g = 50 nm, 此时, Lp为51.5 × 103 μm, A为3.62 × 10–4. 与文献[23]提出的LR-HTSPPs波导相比, Lp增大将近3倍, 而A减小1个数量级. SWWs的α和θ也是影响WWTHSW模式性能的重要几何参数. 传播长度Lp随α和θ变化的规律如图3(a)所示, 对于任意θ, Lp随着α的增大而增大. 当α < 70°时, θ的变化对Lp几乎没有影响; 而当α > 70°时, Lp随着θ的增大而减小. A随α和θ的变化关系如图3(b)所示, 对于任意θ, A随着α的增大先减小再增加, 在α = 100°附近存在最小值. 如图3(b)的插图所示, 当α = 100°时, A也随着θ的增大先减小再增加. 图3(c)给出在θ = 80°时, 不同α的WWTHSW的归一化能量密度分布图. 当α = 40°和100°时, 波导模式以SPPs模式为主, 电磁场能量主要集中在Si楔形角与Ag楔形角之间, α增大, 模场能量逐渐远离金属表面, 欧姆损耗减小, 从而使Lp增大; 此时, 模式能量更加集中, A反而减小. 当α = 140°时, 模式以SWWs为主, 模式能量主要集中在SWWs内, 导致欧姆损耗减小, Lp增大, 模场能量无法限制在交界面, 从而使A也增大. 图3(d)给出在α = 100°时, 不同θ的WWTHSW的归一化能量密度分布图. 此时, 波导模式以SPPs模式为主, 随着θ从40°增加到80°再到140°, 模场能量与金属楔形的接触面积不断扩大, Ag引入的欧姆损耗增加, Lp减小. 当θ = 80°时, 模场能量更集中于双楔形之间, A达到最小值3.62 × 10–4, 此时传播长度为5.14 × 104 μm. 在本文以下研究中, 选用参数θ = 80°, α = 100°. 图 3 不同α和θ时, WWTHSW的模式分析 (a) Lp, (b) A; (c)模场分布随α的变化(θ = 80°); (d)模场分布随θ的变化(α = 100°) Figure3. Modes analysis of the WWTHSW with different α and θ, (a) Lp, (b) A; and normalized EM energy density distributions: (c) with different α at a fixed θ of 80°, (d) with different θ at a fixed α of 100°.
图4(a)和(b)给出WWTHSW的Lp和A随着d和h的变化规律. 由图4可知, Lp和A随着d的增加而略微减小. 当d不变, h = 0时, Lp和A比h = 2 μm和5 μm时大. 结果表明, 增加Ag楔形结构(h = 2 μm和5 μm)后的波导相比于没有增加Ag楔形结构(h = 0)时的Lp略有减小, 但却具有更好的模场限制能力. 从图4(c)中的归一化能量密度分布可以看出, 当h为2 μm和5 μm时, 光场全部被限制在超深亚波长区域内, 从而减小了有效模场面积; 而在h = 2 μm和h = 5 μm时的微米边缘的模式轮廓差几乎可以忽略不计. 对于h = 2 μm, WWTHSW的横向模式宽度W = 0.01 μm(W, 其定义为能量密度衰减到其峰值的1/e的全宽度[17]), 相比于h = 0时横向波导模式的W = 1.2 μm, 减小12倍. 本文以下的研究中, 选用d = 100 nm, h = 2 μm. 图 4 不同d和h时, WWTHSW的模式分析 (a) Lp、(b) A; (c)沿x方向的归一化能量密度 Figure4. Modes analysis of the WWTHSW with different d and h, (a) Lp, (b) A, and (c) normalized EM energy density.
4.不同对称性SPPs波导比较为了比较不同对称性混合表面等离子体波导结构的特性, 利用FEM对WWTHSW、HTMWSPPs波导和HTBTSPPs波导的模式特性和传输特性进行了分析. HTMWSPPs波导、HTBTSPPs波导的截面模型如图5(a)所示. 图 5 不同波导性能比较 (a) WWTHSW, HTMWSPPs和HTBTSPPs波导的截面图; (b) WWTHSW, HTMWSPPs和HTBTSPPs波导的A与Lp关系图; (c)品质因数 Figure5. Performance comparison of the WWTHSW, HTMWSPPs and HTBTSPPs wavguide: (a) cross-section views; (b) the relationship between A and Lp; and (c) FOM with different parameters.
图5(b)为Lp与A的相关性对比图. 在仿真中WWTHSW和HTMWSPPs波导选择最佳参数H = 40 μm, h = 2 μm, θ = 80°, α = 100°, g = 50 nm, d = 100 nm. HTBTSPPs波导选择最佳参数H = 10 μm, W = L = 30 μm. 由图5(b)可知, WWTHSW比HTMWSPPs波导和HTBTSPPs波导的Lp更长. 相比于HTMWSPPs波导, WWTHSW由于尖端场增强效应, 光场主要聚集在楔形波导的顶点附近[1], 具有更强的模场限制能力; 而相比于HTBTSPPs波导, WWTHSW没有矩形Si波导部分, 有利于模场能量的集中, 因此具有更小的模场面积. g在50 nm到2 μm范围内, WWTHSW的有效模场面积(Am = λ2/10280)相比于HTBTSPPs波导(Am = λ2/5405)减小近2倍, 相比于HTMWSPPs波导(Am = λ2/7407)减小近1.5倍. 在相同的有效模场面积Am = λ2/5405的情况下, WWTHSW的Lp为65×103 μm, 是HTMWSPPs波导(Lp = 54 × 103 μm)的1.2倍, 是HTBTSPPs波导(Lp = 33 × 103 μm)的2倍. 而在相同的传播长度Lp = 51 × 103 μm的情况下, WWTHSW的有效模场面积(Am = λ2/10280), 比HTBTSPPs波导(Am = λ2/4422)减小2倍. 由图5(c)可知, 相比于HTBTSPPs波导、HTMWSPPs波导, WWTHSW品质因数更好. 因此, WWTHSW相比HTBTSPPs波导、HTMWSPPs波导在相似的传播长度下, 具有更强的模场限制能力和更好的品质因数. 为了分析WWTHSW的耦合特性, 构建两根间距为D的平行WWTHSW, 如图6(a)所示. 通常, 波导的耦合特性由波导的耦合长度Lc = π/(βs – βa)来衡量, 其中βs和βa分别是两个相邻波导的对称和反对称模的传播常数[28]. 图 6 波导耦合特性分析 (a)平行波导三维结构示意图; (b)耦合长度随D的变化; (c)最大传输功率随D的变化 Figure6. Coupling characteristic of waveguides: (a) schematic diagram parallel waveguides; (b) Lc versus the separation between the two waveguides; (c) the maximum transfer power (Pmax) as a function of distance D.