Abstract:In the last two decades, a wide variety of plasmoids events have been observed, ranging from space and astrophysical phenomenon to magnetically confined laboratory plasmas, in which there are a lot of evidence of observational plasmoid-like features supported by direct large-scaled computer simulations. A super-Alfvénic instability, named plasmoid instability, occurs in an extended current sheet, when the Lundquist number exceeds a critical value. The large-aspect-ratio current sheet is fragmented by generating, growing, coalescing and ejecting of plasmoids so that this phenomenon has been proposed as a possible mechanism for fast reconnection scenario. This super-Alfvénic plasmoid instability has been usedin the significant new development of reconnection theory, and thus can provide alternative and more convincing mechanism for fast reconnection. In this work, a “driving” kind of shear flow in the out-of-plane direction is imposed on a two-dimensional, three-component magnetohydrodynamic model with a current sheet system to study the dynamic process of the plasmoids in a current sheet system. The effect of the width and strength of the driving flow on the reconnection rate of plasmoids are numerically analyzed in detail. It is found that the plasmoids are easily formed in the case of strong and wide out-of-plane driving flow. The reconnection rate and the number of the plasmoids increase with the driving flow width and/or driving flow strength increasing. In the presence of guiding field, it is found that the symmetry of the plasmoids is broken in the reconnection plane. In addition, for the fixed guiding field, the growth rate of plasmoids increases much faster when the strength of driving flow increases. Keywords:magnetic reconnection/ plasma driving flow/ plasmiods/ guiding field
图3和图4分别是加入不同宽度的驱动流情况下, 磁岛结构随时间的演化. 宽度LS = 0.05, 强度U0 = 0.1的数值结果如图3所示. 在该参数情况下, 磁岛的演化过程与不加入驱动流的情况类似: 模拟区域两边先形成磁岛, 随后在细长电流片中间形成X点, 并出现两个小磁岛. 之后, 两个小磁岛向中间移动, 融合成一个大磁岛, 磁岛宽度不断增加. 图 3 加入宽度LS = 0.05、强度U0 = 0.1的驱动流时, 磁岛链的演化过程 (a), (b), (c)分别为时间t = 70, t = 80和t = 110的结构, 黑线和背景颜色分别为重联平面的磁力线分布和垂直平面的电流密度 Figure3. Evolution of magnetic configuration with out-of-plane driving flow for LS = 0.05, U0 = 0.1 at (a) t = 70, (b) t = 80, (c) t = 110. The black lines and background colors indicate the magnetic field line in the reconnection plane and the current density in out-of-plane direction, respec-tively.
图 4 加入宽度LS = 0.3, 强度U0 = 0.1 驱动流情况下的磁岛位型 (a), (b), (c)为时间t = 80, t = 110和t = 118的结构, 黑线和背景颜色分别为重联平面的磁力线分布和垂直平面的电流密度 Figure4. The magnetic configuration with out-of-plane dri-ving flow for LS = 0.3, U0 = 0.1 at (a) t = 80, (b) t = 110, (c) t = 118. The black lines and background colors indicate the magnetic field line in the reconnection plane and the current density in out-of-plane direction, respectively.
图5是加入相同宽度LS = 0.3, 不同强度的垂直平面驱动流时, 重联磁通随时间的演化曲线, 其中的重联磁通定义为中性片附近磁通改变量的最大值. 可见重联速率随着驱动流强度的增加而增加, 即垂直平面的驱动流对磁岛链具有解稳的作用. 不同驱动流强度、同一时期(系统演化至非线性磁岛链不稳定性阶段出现小磁岛个数最多的时刻)的磁岛链结构见图6. 由图6可以看出, 随着驱动流强度的增大, 小磁岛个数随之增加. 并且小磁岛的运动合并过程更激烈. 图 5 相同宽度LS = 0.3, 不同强度的驱动流, 重联通量随时间的演化 Figure5. The evolution of reconnected flux with different driving flow strength.
图 6 加入相同宽度LS = 0.3, 不同强度的驱动流时的典型磁岛位型, 黑线和背景颜色分别为重联平面的磁力线分布和垂直平面的电流密度 (a)无驱动流的情况t = 120的结构; (b)加入强度U0 = 0.1的情况在t = 118的结构; (c)加入强度U0 = 0.2的情况在t = 97的结构; (d)加入强度U0 = 0.3的情况在t = 88的结构 Figure6. The magnetic configuration with out-of-plane dri-ving flow with different strength for LS = 0.3 in the same phase. The black lines and background colors indicate the magnetic field line in the reconnection plane and the current density in out-of-plane direction, respectively: (a) Without driving flow at t = 120; (b) with U0 = 0.1 at t = 118; (c) with U0 = 0.2 at t = 97; (d) with U0 = 0.3 at t = 88.
23.3.垂直平面驱动流和导向场By对磁岛链的共同作用 -->
3.3.垂直平面驱动流和导向场By对磁岛链的共同作用
图7是导向场By = 0.1, 垂直平面驱动流宽度LS = 0.05, 强度U0 = 0.1情况下, t = 100, t = 110和t = 119时刻的磁岛位型. 可以看出, 与不加导向场的结果相比, 在模拟平面形成的两个磁岛不是向中间移动, 而是向两边移动, 然后与两边的磁岛融合. 随后, 两磁岛中间的电流片变得越来越细长. 当电流片足够细长时, 电流片断裂, 产生次级磁岛链. 另外, 可以观测到, 导向场和垂直平面的驱动流可以改变磁重联位型在z 方向的对称性. 图 7 导向场By = 0.1, 驱动流宽度LS = 0.05、强度U0 = 0.1情况下的磁岛位型 (a), (b), (c)分别为时间t = 100, t = 110和t = 119的结构, 黑线和背景颜色分别为重联平面的磁力线分布和垂直平面的电流密度 Figure7. The magnetic configuration is effected by out-of-plane driving flow with LS = 0.05, U0 = 0.1 and guilding field By = 0.1 at (a) t = 100, (b) t = 110, (c) t = 119. The black lines and background colors indicate the magnetic field line in the reconnection plane and the current density in out-of-plane direction, respectively.
图8为驱动流宽度LS = 0.3, 强度U0 = 0.1, 导向场By = 0.1时的磁岛链演化情况. 与不加导向场的结果不同, 在模拟平面中间产生了四个小磁岛. 随后小磁岛分别向两边移动, 最后与模拟平面两边的磁岛融合. 磁岛个数比不存在导向场的情况多. 图 8 驱动流宽度LS = 0.3, 强度U0 = 0.1, 导向场By = 0.1的情况下, 磁岛位形的演化 (a), (b), (c)分别为时间t = 70, t = 80和t = 88的结构, 黑线和背景颜色分别为重联平面的磁力线分布和垂直平面的电流密度 Figure8. Evolution of the magnetic configuration with out-of-plane driving flow for LS = 0.3, U0 = 0.1 and guilding field By = 0.1 at (a) t = 70; (b) t = 80; (c) t = 88. The black lines and background colors indicate the magnetic field line in the reconnection plane and the current density in out-of-plane direction, respectively.
驱动流宽度为0.05, 强度U0 = 0.1时, 不同导向场By时, 重联通量随时间的演化见图9(a). 可以看出在强度相同的情况下, 导向场By = 0.2时, 重联速度最快, 之后随着导向场变大, 重联速度变慢. 图9(b)是导向场By = 0.1, 不同强度U0时, 重联通量随时间的演化. 可以看出, 在导向场相同的情况下, 垂直驱动流强度越大, 重联速度越快. 图9(c)是导向场By = 0.1时, 在非线性磁岛链不稳定性阶段小磁岛宽度的增长速度$\dfrac{{\partial w}}{{\partial t}}$(w为小磁岛的半宽度)对强度U0的依赖关系. 可见, 相同导向场情况下, 驱动流强度越大, 小磁岛的增长速度越快. 图 9 (a)驱动流宽度LS = 0.05, 强度U0 = 0.1时, 不同导向场By重联通量随时间的演化; (b)导向场By = 0.1, 驱动流宽度LS = 0.05时, 不同强度U0下重联通量随时间的演化; (c)导向场By = 0.1, 驱动流宽度LS = 0.05时, 小磁岛宽度的增长速度对强度U0的依赖关系 Figure9. (a) Evolution of the reconnection flux with out-of-plane driving flow for LS = 0.05, U0 = 0.1 and different guilding field; (b) evolution of the reconnection flux with different driving flow strength and guilding field By = 0.1; (c) dependence of the growth rate of plasmoid on different driving flow strength with guilding field By = 0.1.