1.State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan 232001, China 2.Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China 3.School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2016YFC060908)
Received Date:24 September 2019
Accepted Date:18 October 2019
Published Online:05 February 2020
Abstract:The temperature error caused by the essential loss and the additional loss of Stokes light and anti-Stokes light widely exist in the distributed optical fiber temperature sensor (DTS). According to the temperature demodulation principle of the DTS, a method of fitting the attenuation difference between Stokes light and anti-Stokes light is proposed, which can realize the temperature self-compensation to reduce the temperature measurement error. Two parts at the different positions of the sensing fiber are regarded as the reference section and the temperature measuring section, respectively. The optical signal of the reference section is used as a parameter when demodulating the temperature and fitting the attenuation difference, and the attenuation difference between the Stokes light and the anti-Stokes light is multi-order fitted by the optical signal of the temperature measuring section, then the multi-order fitting results are used to demodulate the temperature for reducing the temperature error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light, in order to implement the preliminary correction of the temperature. Three groups of the different measuring temperature values at the same position of the optical fiber as well as their corresponding signal values are taken in calculation for eliminating the Rayleigh noise, and the relationship of Rayleigh noise with fiber length and temperature are analyzed, and thus further calculating the Rayleigh noise based on the fitting attenuation difference. The influence of the multi-order attenuation difference on the error in temperature measurement and that on the elimination of the Rayleigh noise are compared with each other, and the Rayleigh noise error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light are reduced, then the temperature is corrected again by eliminating the Rayleigh noise. The effect of the multi-order attenuation difference fitting result on the temperature measurement error and on the elimination of Rayleigh noise are analyzed and compared with each other, then the optimal fitting order is obtained. After fitting the additional error at the temperature measurement section that is caused by the additional loss at the reference section, the temperature compensation is carried out by the fitting result, then the final temperature correction is completed. The experimental results show that the temperature correction effect is best by using the first-order linear fitting results in a temperature range of 30-90 ℃, and the temperature measurement error is reduced from 10.50 ℃ to 0.90 ℃ after being corrected three times. Keywords:temperature/ distributed fiber/ attenuation difference/ self-compensation
通过重复10组实验降低温度波动, 使解调的温度曲线趋于平滑, 进一步将拟合衰减差代入(10)式进行自补偿, 通过采集的斯托克斯及反斯托克斯信号值解调出经过初步修正的温度(图4(a)), 发现温度波动得到有效降低. 初步修正前后的测温误差如图4(b)所示, 与修正前相比一定程度上减小了温度误差, 总体误差减小值在1.47 ℃以下, 完成了温度的初步修正, 但修正后依然存在较大温度误差, 温度误差在35 ℃时达到了最小值0.24 ℃, 86 ℃时达到了最大值8.40 ℃. 图 4 温度修正后的测量结果 (a)初步修正后的测量值; (b)温度修正前后的测温误差 Figure4. Temperature corrected measurement: (a) Preliminary corrected measurement; (b) temperature measurement error before and after temperature correction.
由于反斯托克斯光与斯托克斯光中含有WDM无法完全滤除的瑞利散射光, 因此系统测温结果需要进行降噪处理来实现二次修正. 根据40和60 ℃下的传感光纤上三处不同位置的斯托克斯光与反斯托克斯光信号, 结合(8)和(13)式即可解出未引入拟合衰减差时斯托克斯光和反斯托克斯光中的瑞利噪声, 如图5(a)所示, 温度为40 ℃和60 ℃时, 斯托克斯光中的瑞利噪声波动范围分别为0.0456—0.0732 V和0.04—0.078 V, 反斯托克斯光中的瑞利噪声波动范围分别为0.0122—0.0322 V和0.017—0.03 V. 且瑞利噪声随着光纤长度的增加没有出现明显的上升或下降趋势, 由此可知, 瑞利噪声对光纤长度变化不敏感. 根据20—30 m及140—150 m处光纤中的信号平均值, 结合(8)和(13)式解调出斯托克斯光及反斯托克斯光中的瑞利噪声与温度的关系, 如图5(b)所示, 斯托克斯光中的瑞利噪声在0.0501—0.0716 V波动, 反斯托克斯光中的瑞利噪声在0.0204—0.0270 V波动, 且随着温度的增加没有明显的上升或下降趋势, 因此瑞利噪声对温度不敏感. 由于斯托克斯光的强度大于反斯托克斯光的强度, 且瑞利噪声约为散射光强的10%—20%, 因此斯托克斯光中的瑞利噪声波动比反斯托克斯光中的瑞利噪声波动更明显. 图 5 温度最终修正后的测量结果 (a) 40 ℃和60 ℃时光纤中的瑞利噪声; (b)不同温度下的瑞利噪声; (c)引入Δα前后消除瑞利噪声的测量结果; (d)引入Δα前后消除瑞利噪声的温度误差 Figure5. Temperature corrected final measurement results: (a) Rayleigh noise in fiber at 40 ℃ and 60 ℃; (b) rayleigh noise at different temperatures; (c) measurement results without Rayleigh noise before and after the introduction of Δα; (d) temperature error without Rayleigh noise before and after the introduction of Δα.
根据140—150 m处光纤在40, 50和60 ℃下的斯托克斯光与反斯托克斯光信号平均值以及已解调出的温度值, 结合(13)式、(14)式以及一阶线性拟合方程, 解出未引入拟合衰减差时瑞利噪声${\phi _{{\rm{rst}}}}$和${\phi _{{\rm{ras}}}}$的等效电压值分别为0.0595和0.0242 V, 引入拟合衰减差后解出的瑞利噪声${\phi _{{\rm{rst}}}}$和${\phi _{{\rm{ras}}}}$的等效电压值分别为0.0676和0.0288 V. 代回(13)式和(14)式进行自补偿, 解调的温度修正曲线如图5(c)所示, 对应的测温误差如图5(d)所示. 相比于未引入拟合衰减差直接消除瑞利噪声, 减小了温度误差, 误差减小值最高达到2.53 ℃; 与未引入衰减差且未消除瑞利噪声相比, 误差减小值最高达到7.22 ℃, 温度误差在86 ℃时达到最大值3.11 ℃, 测温准确度明显提高, 完成了温度的二次修正. 利用拟合斯托克斯光与反斯托克斯光衰减系数差对系统所测温度进行修正, 需要对衰减差进行多阶拟合, 通过比较不同阶次拟合对温度的修正效果, 获得衰减差最优拟合阶次, 在实验中发现, 6阶及以上阶次在求解瑞利噪声时, 出现无解或不符合实际的修正情况, 因此在前5阶中通过比较最终修正效果获得最优拟合阶次, 引入各阶拟合衰减差并消除瑞利噪声后的修正结果误差如图6(a)所示. 从图6(a)可以看出, 一阶拟合结果修正后的误差最小, 最大误差值为3.11 ℃. 在引入各阶拟合结果分别进行初步修正后, 消除瑞利噪声实现的温度修正量如图6(b)所示, 从图6(b)可以看出, 在30—90 ℃, 1阶修正量的最大值在90 ℃时修正了5.74 ℃, 5阶修正量最大值在90 ℃时修正了4.00 ℃. 图 6 各阶修正效果 (a)引入各阶拟合结果二次修正后的误差; (b)引入各阶结果后二次修正的温度增量 Figure6. Temperature error after each order fitting: (a) The second correction error after introducing the fitting results of each order; (b) temperature increment for secondary correction after introduction of each order result.
虽然瑞利噪声引起的误差得到了修正, 但光纤参考段的传输附加损耗使测温段产生的测温附加误差仍然存在. 两个测量位置之间的光纤所处温度环境不变, 在光纤长度确定后, 其产生的附加损耗以定值形式被引入测温附加误差随温度变化的拟合曲线中(图7(a)), 瑞利噪声修正后的附加误差与温度的关系为 图 7 附加误差修正 (a)附加误差拟合曲线; (b)附加误差修正前后的测温误差 Figure7. Additional error correction: (a) Additional error fitting result; (b) temperature error before and after additional error correction.