1.School of Physical Science and Technology, Southwest University, Chongqing 400715, China 2.Applied Basic Research Base of Optoelectronic Information Technology of Hunan Province, Hengyang Normal University, Hengyang 421002, China
Fund Project:Project supported by the Postgraduate Science Research Innovation Program of Chongqing, China (Grant No. CYS190950), the Open Fund of Applied Basic Research Base of Optoelectronic Information Technology of Hunan Province, China (Grant No. GD19K01), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018C082), the Special Program for Talent Training in West China funded by National Study Abroad Fund, China (Grant No. [2018]10006), the Innovation and Entrepreneurship Training Program for College Students of Southwest University, China (Grant No. X201910635332), the Young Scientists Fund of the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3010), and the Program for Excellent Talents of Hengyang Normal University, China
Received Date:21 August 2019
Accepted Date:19 November 2019
Published Online:05 February 2020
Abstract:In recent years, metal halide perovskite materials, owing to their excellent photoelectric properties including high photoluminescence quantum yield, high color purity, tunable band gap, etc., have been regarded as new-generation lighting sources and are widely used to fabricate perovskite light-emitting diodes (PeLEDs). Though great progresses have been made in recent years, neither the efficiency nor stability has not yet reached the requirements of commercialization. Thus, further improvement is needed. In this work, a small organic molecule material, namely 4,4'-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) with a wide bandgap and a good hole transport ability, is used as an exciton blocking layer by utilizing the spin-coating method to improve the stability and efficiency of PeLEDs. Highly efficient and stable CsPbBr3 PeLEDs are finally realized. The physical mechanism related to the improved electroluminescence performance is investigated thoroughly. Firstly, the stepped energy level alignment is formed, since the highest occupied molecular orbital energy level (HOMO) of TAPC is located between the HOMO of (3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT: PSS) and the valence band of CsPbBr3, which is beneficial to hole injection and transport. Meanwhile, the lowest unoccupied molecular orbital level of TAPC is high enough to prevent electrons from leaking into the anode effectively and confine electrons and excitons well in the emitting layer. Secondly, the introduction of the TAPC layer can avoid the direct contact between the perovskite light emitting layer and the strong acidic layer of PEDOT:PSS, thereby eliminating the related excitons quenching, which can further increase the radiative recombination. Keywords:all inorganic halide perovskite/ electroluminescent diodes/ hole transport/ exciton quenching/ exciton blocking layer
表1PeLEDs性能 Table1.List of EL performance of PeLEDs.
图 2 PeLEDs的EL性能表征 (a)电流密度-电压; (b)亮度-电压; (c)电流效率-电压-外量子效率; (d) PeLEDs (TAPC浓度为5 mg/mL)在不同电压下的EL光谱, 内插图是不同TAPC浓度的PeLEDs在电压为5 V时的归一化EL谱 Figure2. EL performance of PeLEDs: (a) Current density-voltage (J-V); (b) luminance-voltage (L-V); (c) current-efficiency-voltage-external quantum efficiency (CE-V-EQE); (d) EL spectra of PeLEDs with 5 mg/mL TAPC at different applied voltages; the inset is normalized EL spectra of PeLEDs with different concentrations of TAPC at the same applied voltage of 5 V.
图4为在没有TAPC和有TAPC的衬底上的钙钛矿CsPbBr3薄膜的表面形貌图和相应的钙钛矿颗粒尺寸统计分布图. TAPC插层的引入使得所形成的钙钛矿薄膜的颗粒尺寸(~120 nm)比在没有TAPC薄膜的基底上(~200 nm)的小很多. 这意味着, 在PEDOT:PSS和CsPbBr3之间旋涂一层TAPC薄膜将会促进激子的发光辐射复合. 因为小的钙钛矿颗粒可以更好地约束激子, 减小激子分解成载流子的概率[7]. 同时, TAPC插层的引入使钙钛矿颗粒的形状由原来的无规则形状生长趋向于正方体形状生长. 图 4 (a) ITO/PEDOT:PSS/CsPbBr3和(b) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的SEM图; (c) ITO/PEDOT:PSS/CsPbBr3和(d) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的CsPbBr3颗粒尺寸统计分布 Figure4. SEM images of (a) ITO/PEDOT:PSS/CsPbBr3 and (b) ITO/PEDOT:PSS/TAPC/CsPbBr3; the size distribution of CsPbBr3 grain on (c) ITO/PEDOT:PSS/CsPbBr3 and (d) ITO/PEDOT:PSS/TAPC/CsPbBr3.
图5(a)为ITO/PEDOT:PSS/CsPbBr3, ITO/PEDOT:PSS/TAPC/CsPbBr3两个样品的X射线衍射图谱(X-ray diffractometer, XRD). 从图5(a)可以看到, 有TAPC插层的CsPbBr3薄膜的XRD图谱跟没有TAPC插层的CsPbBr3薄膜的XRD图谱相比, 位于15.4°的(100)和位于31.9°的(200)晶面的衍射峰的强度都有不同程度的增加, 同时在21.1°处XRD出现了一个新的衍射峰, 相应的晶面为(110). 这表明TAPC的引入不会改变钙钛矿结晶结构, 都属于正交晶系[10], 但是TAPC的引入有利于CsPbBr3结晶, 使其晶体生长取向性更好. 图 5 在PEDOT:PSS和PEDOT:PSS/TAPC衬底上的CsPbBr3薄膜的表征 (a)晶体结构(XRD); (b)紫外吸收, 内插图是在500?518 nm波长范围吸收的放大图; (c) PL光谱, 内插图是在520?535 nm波长范围PL的放大图; (d) TRPL曲线 Figure5. Characteristics of CsPbBr3 film on PEDOT:PSS and PEDOT:PSS/TAPC: (a) XRD; (b) absorption, and the inset is a large image of normalized PL spectra from 500 to 518 nm; (c) normalized PL spectra, and the inset is a large image of normalized PL spectra from 520 to 535 nm; (d) TRPL decay curves.