Fund Project:Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA14), the Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province, China (Grant No. 2017zhyx25), the Scientific Research of BSKY from Anhui Medical University, China (Grant No. XJ201812), and the Scientific Research of XKJ from Anhui Medical University, China (Grant No. 2018XKJ013)
Received Date:29 May 2019
Accepted Date:09 August 2019
Available Online:01 November 2019
Published Online:05 November 2019
Abstract:Establishing a universal model to characterize the relationship between light rays and optical waves is of great significance in optics. The ray model provides us with an intuitive way to study the propagation of beams as well as their interaction between objects. Traditional ray model is based on the normal of a beam wave front. The normal vector is defined as the direction of ray. However, it fails to describe the relationship between light ray and optical wave in the neighborhood of focus or caustic lines/surface since light ray in those regions are no longer perpendicular to the wavefront. In this work, the ray model of a light beam is built according to its Fourier angular spectrum, where the positions of rays can be determined by the gradient of the phase of the Fourier angular spectrum. On the other hand, the Fourier angular spectrum of a light beam can be reconstructed through the ray model. Using Fourier angular spectra, we construct the ray model of two typical beams including the Airy beam and the Cusp beam. It is hard to construct ray model directly from the optical field of these beams. In this ray model, the information about ray including direction and position involves the propagation properties of light beams such as self-accelerating. In addition, we demonstrate that the optical field of the focused plane wave can be reconstructed by the ray model in Fourier regime, and the optical field in spatial domain can be obtained by inverse Fourier transform. Simulation results are consistent with the results from Debye’s method. Finally, the high-dimensional ray model of light beams is elaborated in both spatial and spectral regime. Combined with focused plane wave, Airy beam and rays in quadratic gradient-index waveguide, our results show that the ray model actually carries the information about optical field in both spatial and Fourier domain. Actually, the traditional ray model is just a spatial projection of the high-dimensional ray model. Hence, when traditional ray model fails at the focus or caustic lines/surface, it is able to obtain the spectrum of the corresponding optical field from the Fourier domain, and then obtain the field distribution in spatial domain by inverse Fourier transform. Keywords:geometrical optics/ light ray/ high dimension light ray/ Fourier angular spectrum
根据(12)和(13)式可得, 对应于一组参数$\left( {\xi,\eta,z} \right)$, 可分别解得两对不同值的参数p以及参数q. 这两对参数可两两组合得到四组方向${{v}}\left( {p,q} \right)$. 因此对于Airy光束内每一位置而言, 有四根光线同时经过该点. 为了展示Airy光束的光线模型, 将光线的单位向量投影到xoy面, 并展示了传输不同距离后(不同横截面)的Airy光束的光线模型. 图2展示了不同横截面处Airy光束的光线分布. 模拟中选取$\lambda = $ 0.532 μm, $a = b = 0.1$, $\alpha = $$\beta = 2 $. 图中红色箭头为光线的单位向量在xoy面上的投影向量, 灰色点为光线所经过的点. 对于Airy光束, 有4条光线同时从同一点出发. 当z = –180 μm时, 如图2(a)所示, 光线方向的合方向偏向第三象限, 代表光波场传输的运动趋势. 随着光束传输到z = –100 μm处, 如图2(b)所示, 光线的合方向依然偏向第三象限. 可见光波场的光斑分布相对于图2(a)沿着第三象限对角线发生了平移. 此时光线长度减小, 表明光波场平移的速度正在减慢. 当光束传输到z = 0 μm处, 如图2(c)所示, 经过每一点的光线方向均匀指向四周, 因此光线的合方向并不具有明显的偏向性. 根据图2(a)—(c)可知, Airy光束在$z < 0$时向第三象限对角线方向自加速传输. 当光束传输到$z > 0$处, 如图2(d)所示光线的合方向偏向于第一象限, 此时Airy光束沿第一象限对角线方向自加速传输. 随着传输距离的增大, 光线在xoy面投影的长度增加表明Airy光束光斑平移的速度逐渐增大. 图2(f)展示了Airy光束的光线模型. 光线与抛物面焦散面相切使得光束具有自加速特性. 图 2 不同横截面处Airy光束的光线分布, 其中(a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, (e) $z = 180\;{\text{μm}}$; 背景色为归一化的光强分布; 灰色点为光线起点, 红色箭头为光线在xoy面投影矢量, 长度正比于光线与z轴的夹角大小; (f) Airy光束的光线模型; 不同颜色用以区分不同位置的光线 Figure2. Ray model of Airy beam at (a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, and (e) $z = 180\;{\text{μm}}$. Backgrounds is the normalized intensity distribution. The transverse directions of rays are represented by red arrows, the length of arrow is proportional to the sine of the angle between the ray and the z axis. (f) Ray model of Airy beam. Different colors are used to distinguish the rays at different positions.
图3展示了不同横截面处Cusp光束的光线分布, 模拟中选取${w_0} = 1.2$. 当z = –180 μm时, 如图3(a)所示, 此时Cusp拥有近似为三角形的光斑分布. 光线分布基本与光斑分布重合, 其光线起点的包络同样近似为三角形. 光线指向光束中心位置, 表明该光斑尺寸随着传播有缩小趋势. 随着光束传输到z = –100 μm处, 如图3(b)所示, Cusp光束的光斑尺寸缩小, 光线分布更加密集, 光线起点的包络依然保持近似三角形的结构. 光线依然指向光束中心位置, 表明光斑尺寸会进一步缩小. 注意到图3(b)中的箭头长度相较于图3(a)的箭头长度短, 表明光斑缩小的速度正在减慢. 如图2(c)所示, 当光束传输到z = 0 μm处, 光线位置均匀分布在同心圆上. 根据图3(a)—(c)可知, Cusp光束在$z < 0$时, 其光斑分布会随着光束传输逐渐会聚. 当光束传输到$z > 0$处, 如图3(d)所示, 此时z = 100 μm. 虽然光斑分布与图3(b)类似, 但是其光线方向指向光束外部, 表明光束正在发散. 随着传输距离的增大, 箭头长度增加, 光线发散程度越强. 同时Cusp光束的光斑尺寸也在增大. 图3(f)展示了Cusp光束的光线模型. 光线倾斜相互交错, 在束腰附近的包络线为圆形. 随着光束的传输, 光线的包络线逐渐变为近似三角形, 使得光束的光斑呈现自加速特性. 图 3 不同横截面处Cusp光束的光线分布, 其中(a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, (e) $z = 180\;{\text{μm}}$; 背景色为归一化的光强分布; 灰色点为光线起点, 红色箭头为光线在xoy面投影矢量, 长度正比于光线与z轴的夹角大小; (f) Cusp光束的光线模型; 不同的颜色用以区分不同位置的光线 Figure3. Ray model of Cusp beam at (a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, and (e) $z = 180\;{\text{μm}}$. Backgrounds is the normalized intensity distribution. The transverse directions of rays are represented by red arrows, the length of arrow is proportional to the sine of the angle between the ray and the z axis. (f) Ray model of Cusp beam. Different colors are used to distinguish the rays at different positions.
图6(a)展示了二维Airy光束构建高维光线模型, 该光线模型在xoz面的投影如图6(b)所示. 该投影模型即为Berry等[20]构建的Airy波包的世界线模型, 可见光线与抛物线形焦散线相切, 在焦散线附近几何光学失效. 然而如图6(c)所示, 由于光束在真空中传输, 光线模型在poz内的投影依然是平行的直线, 意味着此时能够通过光线模型正确构建Airy光束的傅里叶角谱信息. 图 6 二维Airy光束的高维光线模型 (a) Airy光束的三维光线模型; (b)三维光线模型在xoz平面内的投影; (c)三维光线模型在poz平面内的投影 Figure6. High-dimensional ray model of (1 + 1)D Airy beam: (a) 3D ray model of (1 + 1)D Airy beam; (b) projection of 3D ray model in xoz plane; (c) projection of 3D ray model in poz plane.
m为非负整数. (20)式即为高维光线模型的参数方程. 图7(a)展示了该折射率分布下的厄米光束的高维光线模型, 光线在xpz坐标系内沿螺旋线轨迹传输. 该光线模型在xoz面的投影如图7(b)所示, 具有一定的周期性. 光线模型在poz面的投影如图7(c)所示, 同样具有周期性. 可见, 光波场在折射率变化的波导中具有更为复杂的高维光线结构. 图 7 二维抛物线型波导中的厄米-高斯光束的高维光线模型 (a)三维光线模型; (b)三维光线模型在xoz平面内的投影; (c)三维光线模型在poz平面内的投影 Figure7. High-dimensional ray model of Hermit-Gaussian beam in quadratic gradient-index waveguide: (a) 3D ray model; (b) projection of 3D ray model in xoz plane; (c) projection of 3D ray model in poz plane.