1.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China 2.State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2017 YFA0303800), the National Natural Science Foundation of China (Grant Nos. 61775183, 11634010), the Basic Research Plan of the Natural Science Research Project of Shaanxi Province, China (Grant Nos. 2017KJXX-12, 2018JM1058), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019JC008, 3102018jcc034)
Received Date:22 May 2019
Accepted Date:29 July 2019
Published Online:05 November 2019
Abstract:We report the enhanced third-harmonic generation (THG) from a silicon metasurface consisting of an array of L-shaped nanoresonators. The L-shaped nanoresonator is designed as a small cuboid with a notch cut from one corner. And 16 × 15 L-shaped nanoresonators are arranged into an array with a square lattice. In order to fabricate the structure, a 600-nm-thick silicon layer is first deposited on a 500-μm-thick sapphire substrate, which is then patterned into the metasurface structure by using electron beam lithography and inductively coupled plasma dry etching process. To evaluate the linear optical property of the fabricated metasurface, a continuous-wave narrow band laser with a tunable wavelength range of 1530?1560 nm is employed to measure the transmission and reflection spectrum. The measurement results show a Fano resonance at a wavelength of 1548 nm when the incident laser is linearly polarized along the long arm of the L-shaped nanoresonator. Pumping at the resonant wavelength, the metasurface shows significant polarization sensitivity for the transmitted light and the reflected light. To excite the THG signal from the metasurface, a femtosecond pulsed laser with a tunable wavelength range of 1540?1560 nm is then employed as the pump. Strong THG signal is observed when the laser wavelength is tuned on the resonant wavelength (1548 nm), indicating a conversion efficiency of ~ 3×10–7. By comparing the THG signals triggered on- and off-resonance, an enhancement factor of 220 is extracted, which is attributed to the field-enhancement of the Fano resonance. The resonance enhanced THG signal also has polarization-dependence with an extinction ratio of 15 dB. These experimental results are verified well by numerical simulations based on a finite-element technique, including the Fano resonance and the enhanced THG process. By combining the numerically calculated electrical field of the resonant mode and the calculation of nonlinear polarizations, the resonance enhanced THG as well as its polarization-dependence are confirmed numerically. The realized strongly enhanced THG from the silicon metasurface promises to extend their linear optical functionalities into nonlinear regime. Keywords:metasurface/ third-harmonic generation/ silicon
全文HTML
--> --> -->
3.实验结果与讨论根据米氏共振理论, 当入射电磁波在亚波长尺度的光学结构内发生电磁共振时, 从共振中心散射的电磁波会沿特定方向出现增强现象[25]. 因此, 在对超构表面结构的光学表征中, 往往根据透射和反射信号出现的反常现象判断超构表面内是否发生共振效应以及确定共振中心波长. 如图1(d)所示的实验测试光路, 选用沿y方向偏振的线偏振连续激光作为入射光, 在1530—1560 nm范围内对样品进行波长扫描, 且扫描过程中入射光功率始终维持在0.2 mW. 同时, 分别利用两个红外光探测器实时记录不同波长入射光的透射以及反射信号强度. 测量到的透射和反射谱如图2(a)所示. 图 2 (a)超构表面在1530?1560 nm范围内的反射和透射光谱(T, 透射谱; R, 反射谱); (b)抽运波长与共振波长(1548 nm)重合时产生的THG信号峰; (c) THG信号相对于抽运光的功率依赖性; (d) THG强度分布的空间扫描; (e)不同抽运波长下THG信号的光谱演化, 插图为对谱线进行归一化后的结果; (f)对(e)中所有THG信号谱线进行能量积分的结果 Figure2. (a) Reflection and transmission spectra of the metasurface in the wavelength range of 1530?1560 nm (T, transmission spectrum; R, reflection spectrum); (b) THG signal peak when the pump wavelength coincides with the resonant wavelength at 1548 nm; (c) power dependence of THG intensity; (d) spatial scanning of THG intensity distribution; (e) spectra of THG signals pumped with different wavelengths, and the inset shows the result of normalizing each line; (f) integral results for all THG spectra shown in panel (e).
在1548 nm波长处, 透射谱和反射谱分别出现极大值和极小值的情况, 意味着前向散射光在该点出现增强. 由此可以确定当抽运波长为1548 nm时, 可在共振单元内部激发共振效应, 共振峰半峰值宽度(FWHM) Δλ约为5.5 nm. 另外, 由于米氏共振单元具有L形, 可保证其横向电偶极子和纵向磁偶极子的米氏共振模式发生重叠, 使得共振单元间通过模式耦合形成法诺共振. 因此, 所获得共振线型呈现非对称的法诺线型, 且相较单个L形共振单元, 品质因子得到提高[13]. 为了研究该共振效应对硅介质内三阶非线性效应的增强作用, 实验上采用脉冲激光激发超构表面结构的THG信号. 首先将激光器输出波长固定在位于共振波长中心的1548 nm, 产生了如图2(b)所示中心波长约为516 nm的THG信号. 保持抽运波长恒定, 连续调节激光器的输出功率, 得到如图2(c)所示的THG信号强度随抽运光功率的响应趋势, 图中红色曲线为三次方拟合函数曲线, 可以看出THG信号功率与抽运光功率间存在明显的三次方依赖关系. 当形成二维阵列时, 在单个共振单元法诺共振以及单元间局域场叠加补偿的共同作用下, 阵列中心区域结构单元支持明确的法诺共振模式且电磁场增强显著. 逐渐靠近阵列边缘时, 结构单元支持的共振模式存在较大辐射损耗, 使得电磁场增强较弱[13]. 因此, 由超构表面增强的三次谐波将呈现与超构表面共振模式分布相同的中间强、边缘弱的空间分布特性, 如图2(d)所示. 为了进一步提高THG的增强效果, 一方面, 可以通过改变共振单元的非对称系数改进共振单元模场的辐射衰减, 或者通过设计共振单元阵列的周期来扩大共振单元间模场的有效叠加区域等以增强超构表面在激发光波长处的电磁场分布. 另一方面, 可以构建在抽运激光和THG波长处均具有共振特性的超构表面, 通过双共振模式进一步提高THG的增强效果. 保持抽运光功率不变, 通过测量THG信号强度随抽运波长的依赖性, 进一步明确超构表面结构内所发生的共振效应对硅介质中所产生THG的增强效果. 图2(e)给出了当抽运波长从1540 nm逐渐移动到1560 nm的过程中, 所激发的THG光谱, 测量过程中, 所有入射波长对应的抽运激光功率均恒定为5 mW, 经透镜聚焦后的光斑直径约为3 μm. 由图2(e)光谱图可以看出, 随着抽运波长的改变, THG信号在中心波长位置发生移动的同时, 其强度表现出先增强后减弱的现象. 为了更为直观地说明这种强度变化, 对图2(e)中的每条THG谱线分别进行能量积分, 结果如图2(f)所示. 可以清楚地看到, 当抽运波长位于共振中心位置(1548 nm)时, 超构表面结构中的共振模式被激发, 并通过其强烈局域的模场对硅中的THG过程进行增强, 因此实现了最大的THG信号强度. 随着抽运波长逐渐偏离共振波长中心, 入射激光与共振模式不发生耦合, 仅在单次通过硅超构表面过程中对THG进行激发, 因此所产生的THG信号逐渐减弱并稳定到很低的强度. 因此, 通过对比波长位于1548 nm与远离1548 nm的抽运激光在相同功率下所激发的THG信号, 可以提取出超构表面结构的共振模式对THG的增强效果. 计算得到的增强因子约为220. 这种提取增强因子的方法, 由于保持抽运激光聚焦在超构表面相同位置处, 可以避免由于有效硅材料不同而引起的误差. 该结果证明了所设计的超构表面内发生法诺共振效应时, 结构内部的局域电磁场强度获得了显著增强, 且利用这种增强效应可以有效提高硅介质内所激发的THG信号强度. 为了阐释和验证上述实验结果, 根据所设计的超构表面结构参数利用有限元数值模拟软件(COMSOL)计算该结构发生共振时局域电磁场的分布特性, 数值模拟模型为位于500 μm厚蓝宝石衬底上单晶硅(n = 3.48)的16 × 15共振单元阵列, 且x, y和z方向均使用完美匹配层. 在入射端口设置沿y方向偏振的1530—1560 nm的宽谱平面偏振激发光. 在波长扫描后, 由所采用的COMSOL软件中的S参数得到超构表面的透射和反射谱线. 图3(a)左侧展示了16 × 15阵列超构表面的模场分布, 表明共振模场的分布主要集中在超构表面结构的中心区域. 图3(a)右侧为对单个共振单元的电磁场分布的模拟结果, 呈现出横向的电场分量(右上)以涡旋态的形式围绕在中心部位, 而纵向的磁场分量(右下)则集中在电场分量的中央. 这种强烈局域的电磁场模式与硅结构的重合可有效保证三阶非线性的增强. 图 3 (a)左图为超构表面电场在x-y平面内分布情况的数值模拟, 右图为单共振单元横向的电场分量(右上)和纵向的磁场分量(右下); (b)样品各向异性透射谱的数值模拟; (c)透射、反射信号以及THG信号强度的数值计算结果 Figure3. (a) Numerical simulation of the distribution of electric field of the metasurface in the x-y plane; (b) numerical simulation of the anisotropic transmission spectra of the sample; (c) numerical simulation of reflection (R), transmission (T) spectra and intensity of THG signals.