Fund Project:Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20180101282JC) and the National Natural Science Foundation of China (Grant No. 40974067)
Received Date:09 June 2019
Accepted Date:10 July 2019
Available Online:01 October 2019
Published Online:20 October 2019
Abstract:In recent years, electrokinetic effect has received wide attention. The electrokinetic effect refers to the coupling and conversion of acoustic waves and electromagnetic waves in a porous medium. Due to the electric double layer structure of porous medium, electromagnetic waves are generated during acoustic waves propagation in the liquid-containing porous medium. Based on this phenomenon, one proposes a method for electrokinetic effect logging.The electrokinetic effect has great application prospects in earthquake prediction and engineering exploration. The generation mechanism and propagation law of acoustic-electric coupling wave in electrokinetic effect logging of double-cylindrical-layer porous medium are explored in this paper. By calculating the vertical secant integral of the electric field branch point, the total response of the interface converted electromagnetic wave can be obtained. Previously, in the cylindrical layered medium, the secant integral corresponding to the borehole fluid and the inner layer medium branch point is zero. So the examples in this paper are calculated from the vertical secant integral of branch point kem2, which corresponds to the outermost infinite medium. It is found that when each time the longitudinal and transverse waves of the formation propagate to the interface, the interface converted electromagnetic waves are generated. These converted electromagnetic waves constitute the total response of the interface converted electromagnetic wave. At the same time, the influence of porous medium fluid salinity on interface converted electromagnetic wave is investigated. It is found that when only the inner layer porous medium fluid salinity changes, the amplitude of the interface converted electromagnetic wave response of the two interfaces is affected. When only the salinity of the outermost porous medium fluid changes, only the amplitude of the interface converted electromagnetic wave generated at the second interface is affected, but the interface electromagnetic waves generated at the internal interface are not influenced. When the difference in pore fluid salinity between both sides of the medium interface is larger, the amplitude of the interface converted electromagnetic wave is greater and the electromagnetic waves generated from the two interfaces are independent of each other.The case where fluid intrusion zone in porous medium is investigated, and the generation mechanism of interface converted electromagnetic wave is also studied when only a mineralization interface exists. It is found that the converted electric field is also generated when the acoustic waves propagates to the salinity interface. Since there exists neither multiple refraction of acoustic wave nor reflection of acoustic wave in the porous medium, the interface electromagnetic wave has only two wave packets, which are interface converted electromagnetic waves generated respectively at the borehole wall and at the electrochemical interface.The interface converted electromagnetic wave can be used to detect the location of the medium interface and the salinity interface. It can also clearly reflect the refraction and reflection law of wave propagating in stratified porous medium, which is of great significance for understanding the interface response mechanism of double-cylindrical-layer porous medium in electrokinetic effect logging. Keywords:electrokinetic effect/ porous formation/ secant integral/ interface converted electromagnetic wave
为了说明波包成分a的产生机理并验证本文算法的正确性, 井外为分层孔隙介质的界面转换电磁波时域波形与井孔外为单层无限大地层的界面转换电磁波时域波形作对比, 结果如图4所示. 如图4(a)所示, 当孔隙介质1的参数与单层无限大介质参数一致时, 第一组波包a与井外为单层无限大地层界面转换电磁波时域波形完全重合. 这说明第一组波包a是在I界面处(即井壁处)产生的转换电磁波. 除了第一组波包a外, 后面的成分都是由于孔隙介质分界面的存在而产生的. 将双层孔隙介质退化成单层无限大孔隙介质, 并与井外为单层无限大孔隙介质的界面转换电磁波模拟波形对比如图4(b)所示, 可以发现二者时域波形完全一致, 说明了本文算法的正确性. 图 4 双层介质与单层无限大介质声电测井界面转换电磁波波形对比 (a)孔隙介质1与单层无限大介质参数一致时的界面转换电磁波; (b)双层介质退化为单层介质时的界面转换电磁波(实线对应单层无限大介质, 虚线对应双层介质) Figure4. Comparison of electrokinetic logging interface converted electromagnetic wave waveforms between two-layer medium and single-layer infinite medium: (a) Interface converted electromagnetic waveform when porous medium 1 parameters are consistent with single layer infinite medium; (b) interface converted electromagnetic wave when double-layer medium degenerates into single-layer medium (the solid line corresponds to the single-layer infinite medium, the dashed line corresponds to the double-layer medium).
为了进一步说明每组成分的产生机理, 对比了不同孔隙介质1层厚的界面转换电磁波波形. 图5为当孔隙介质1厚度分别为5和7 m时, 界面转换电磁波的波形对比, 其中${r_2}$为孔隙介质1的厚度. 图6(a)—图6(c)分别为两种情况下成分b, c, d到时差对比示意图. 图 5 不同夹层介质层厚的界面转换电磁波(实线和虚线分别对应夹层介质层厚5 m和7 m) Figure5. Interface converted electromagnetic wave waveforms of different interlayer medium thickness (the solid and dashed lines correspond to the interlayer dielectric layer thickness of 5 m and 7 m, respectively).
图 6 界面转换电磁波不同成分到时差 (a)成分b; (b)成分c; (c)成分d (实线和虚线分别对应夹层介质层厚5和7 m) Figure6. Arrival time difference of different components of the interface converted electromagnetic wave: (a) Component b; (b) component c; (c) component d (the solid and dashed lines correspond to the interlayer medium thickness of 5 m and 7 m, respectively).
通过对比, 发现夹层孔隙介质1厚度的改变并没有影响第一组波包的到时和幅度, 这进一步说明了第一组波包a是由井内声波传播至井壁(界面I)产生的声电转换电磁波. 当夹层孔隙介质1的厚度增大时, 界面转换电磁波时域波形除了波包a以外的成分到时有明显增加. 如图6(a)所示, 当夹层孔隙介质厚度增大2 m时, 第二组波包b的到时之差为0.508 ms, 计算波速为3937.0 m/s, 这与孔隙度为0.2的地层快纵波理论波速一致, 所以第二组波包b为地层快纵波传播至界面II而产生的转换电磁波. 如图6(b)所示, 当孔隙介质1的厚度改变2 m时, 第三组波包c到时之差为0.789 ms, 计算得到波速为2534.9 m/s, 与理论地层横波波速一致, 所以第三组波包c为地层横波传播至界面II时产生的转换电磁波. 图6(c)显示了第四组波包d到时之差为1.016 ms, 与地层快纵波传播4 m的距离时长一致. 所以第四组波包为地层快纵波在夹层内传播至界面II并经过一次反射后传播回到界面I时产生的转换电磁波. 以此类推, 地层纵、横波在井外为分层的孔隙地层传播的过程当中, 每一次在界面处发生折反射时, 都会产生以地层电磁波速度传播的界面转换电磁波. 接下来考察孔隙介质流体矿化度对界面电磁波的影响. 图7是不同孔隙介质流体矿化度下的界面转换电磁波波形, 其中C, C1, C2分别为井内流体矿化度, 孔隙介质1流体矿化度和孔隙介质2流体矿化度. 图 7 不同孔隙介质流体矿化度下的界面转换电磁波波形(a)不同夹层孔隙介质流体矿化度的界面转换电磁波波形(实线, 虚线, 点划线分别对应夹层孔隙介质流体矿化度C1 = 0.01, 0.005, 0.0025 mol/L); (b)不同最外层孔隙介质流体矿化度的界面转换电磁波波形(实线, 虚线, 点划线分别对应最外层孔隙介质流体矿化度C2 = 0.01, 0.005, 0.0025 mol/L) Figure7. Interface converted electromagnetic wave waveforms under different porous medium fluid salinity: (a) Interface converted electromagnetic wave waveforms of different interlayer porous medium fluid salinity (solid line, dashed line, dash-dotted line corresponding to interlayer porous medium fluid salinity C1 = 0.01, 0.005, 0.0025 mol/L respectively); (b) interface converted electromagnetic wave waveforms of different outermost porous medium fluid salinity (solid line, dashed line, dash-dotted line corresponding to outermost porous medium fluid salinity C2 = 0.01, 0.005, 0.0025 mol/Lrespectively).
图7(a)所示是井内流体矿化度与最外层孔隙介质流体矿化度不变, 仅孔隙介质1的流体矿化度发生变化时界面转换电磁波的时域波形对比. 夹层孔隙介质流体矿化度的改变对I, II两个界面的界面转换电磁波幅度都有影响. 这是因为界面转换电磁波是由声波传播到界面时产生的, 而孔隙介质1与界面I, II都有交接, 所以孔隙介质1流体矿化度的改变会影响界面转换电磁波所有成分的幅度. 但是介质矿化度的改变对于界面转换电磁波的到时没有影响, 这是因为电场由声波在界面处转化而来, 而孔隙介质流体矿化度的改变不影响声波的传播速度. 当井内流体与内层孔隙介质流体矿化度不变, 仅最外层无限大孔隙介质(孔隙介质2)的流体矿化度发生变化时的波形对比如图7(b)所示. 孔隙介质2的流体矿化度改变对第I界面的转换电场幅度与到时都没有影响, 仅对第II界面的转换电场幅度有影响, 并且孔隙介质流体矿化度之间的差异越大, 界面转换电磁波的幅度越大. 当井外孔隙介质存在液体侵入带时, 侵入液体导致孔隙介质流体矿化度之间不匹配, 进而形成了矿化度界面. 针对这种情况, 对井外孔隙介质仅存在矿化度界面的情况进行考察. 不同矿化度界面位置的界面转换电磁波时域波形与不存在矿化度界面的情况对比如图8所示, ${r_3}$为矿化度界面与井壁的距离. 图 8 不同矿化度界面位置的界面转换电磁波波形对比(实线对应不存在矿化度界面时的界面转换电磁波, 虚线和点划线分别对应矿化度界面距离井壁5 m和6 m时的界面转换电磁波) Figure8. Waveform comparison of interface converted electromagnetic wave waveforms of different salinity interface position (the solid line corresponds to the interface converted electromagnetic wave when there is no salinity interface, the dashed line and the dash-dotted line respectively correspond to the interface converted electromagnetic waves when the salinity interface is 5 m and 6 m away from the well wall).
界面转换电磁波共有两组波包, 通过对比可知第一组波包为声波传播至井壁处所产生的转换电磁波. 当矿化度界面位置远离井壁1 m时, 第二组波包的到时差为0.25 ms, 与地层声波传播1 m所需时间一致. 所以第二组波包为声波传播至矿化度界面所产生的转换电磁波. 由于孔隙介质不存在物理界面, 声波不会在孔隙介质中发生多次折反射, 所以除了井壁处和矿化度界面处的转换电磁波, 并无其他响应产生. 同时考察了矿化度对界面转换电磁波的影响. 图9显示了矿化度界面两侧孔隙介质流体矿化度差异对界面转换电磁波的影响, 其中${\text{δ}} C$为界面外侧孔隙流体矿化度与界面和井壁之间的孔隙流体矿化度之差. 图 9 矿化度差异对界面转换电磁波的影响(实线, 虚线和点划线分别对应矿化度差异为${\text{δ}} C =$0.0005, 0.0015, 0.0025 mol/L) Figure9. Effect of salinity difference on interface converted electromagnetic waves (the solid line, the dashed line and the dash-dotted line respectively correspond to the salinity difference of ${\text{δ}} C=$0.0005, 0.0015, 0.0025 mol/L).